| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr3d | GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
| Ref | Expression |
|---|---|
| 3brtr3d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3brtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3brtr3d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 3 | 3brtr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | breq12d 4046 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷)) |
| 5 | 1, 4 | mpbid 147 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 class class class wbr 4033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 |
| This theorem is referenced by: ofrval 6146 phplem2 6914 ltaddnq 7474 prarloclemarch2 7486 prmuloclemcalc 7632 axcaucvglemcau 7965 apreap 8614 ltmul1 8619 divap1d 8828 div2subap 8864 lemul2a 8886 mul2lt0rlt0 9834 xleadd2a 9949 monoord2 10578 expubnd 10688 bernneq2 10753 nn0ltexp2 10801 apexp1 10810 resqrexlemcalc2 11180 resqrexlemcalc3 11181 abs2dif2 11272 bdtrilem 11404 bdtri 11405 xrmaxaddlem 11425 fsum00 11627 iserabs 11640 geosergap 11671 mertenslemi1 11700 eftlub 11855 eirraplem 11942 unitmulcl 13669 unitgrp 13672 xblss2 14641 xmstri2 14706 mstri2 14707 xmstri 14708 mstri 14709 xmstri3 14710 mstri3 14711 msrtri 14712 logdivlti 15117 perfectlem2 15236 2sqlem8 15364 apdifflemr 15691 |
| Copyright terms: Public domain | W3C validator |