| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr3d | GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
| Ref | Expression |
|---|---|
| 3brtr3d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3brtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3brtr3d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 3 | 3brtr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | breq12d 4061 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷)) |
| 5 | 1, 4 | mpbid 147 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 class class class wbr 4048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3172 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 |
| This theorem is referenced by: ofrval 6179 phplem2 6962 ltaddnq 7533 prarloclemarch2 7545 prmuloclemcalc 7691 axcaucvglemcau 8024 apreap 8673 ltmul1 8678 divap1d 8887 div2subap 8923 lemul2a 8945 mul2lt0rlt0 9894 xleadd2a 10009 monoord2 10644 expubnd 10754 bernneq2 10819 nn0ltexp2 10867 apexp1 10876 resqrexlemcalc2 11376 resqrexlemcalc3 11377 abs2dif2 11468 bdtrilem 11600 bdtri 11601 xrmaxaddlem 11621 fsum00 11823 iserabs 11836 geosergap 11867 mertenslemi1 11896 eftlub 12051 eirraplem 12138 bitscmp 12319 unitmulcl 13925 unitgrp 13928 xblss2 14927 xmstri2 14992 mstri2 14993 xmstri 14994 mstri 14995 xmstri3 14996 mstri3 14997 msrtri 14998 logdivlti 15403 perfectlem2 15522 2sqlem8 15650 apdifflemr 16101 |
| Copyright terms: Public domain | W3C validator |