| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr3d | GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
| Ref | Expression |
|---|---|
| 3brtr3d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3brtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3brtr3d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 3 | 3brtr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | breq12d 4096 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷)) |
| 5 | 1, 4 | mpbid 147 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 class class class wbr 4083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: ofrval 6235 phplem2 7022 ltaddnq 7602 prarloclemarch2 7614 prmuloclemcalc 7760 axcaucvglemcau 8093 apreap 8742 ltmul1 8747 divap1d 8956 div2subap 8992 lemul2a 9014 mul2lt0rlt0 9963 xleadd2a 10078 monoord2 10716 expubnd 10826 bernneq2 10891 nn0ltexp2 10939 apexp1 10948 resqrexlemcalc2 11534 resqrexlemcalc3 11535 abs2dif2 11626 bdtrilem 11758 bdtri 11759 xrmaxaddlem 11779 fsum00 11981 iserabs 11994 geosergap 12025 mertenslemi1 12054 eftlub 12209 eirraplem 12296 bitscmp 12477 unitmulcl 14085 unitgrp 14088 xblss2 15087 xmstri2 15152 mstri2 15153 xmstri 15154 mstri 15155 xmstri3 15156 mstri3 15157 msrtri 15158 logdivlti 15563 perfectlem2 15682 2sqlem8 15810 apdifflemr 16445 |
| Copyright terms: Public domain | W3C validator |