![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3brtr3d | GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
Ref | Expression |
---|---|
3brtr3d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3brtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3brtr3d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | 3brtr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | breq12d 3880 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷)) |
5 | 1, 4 | mpbid 146 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 class class class wbr 3867 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-un 3017 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 |
This theorem is referenced by: ofrval 5904 phplem2 6649 ltaddnq 7063 prarloclemarch2 7075 prmuloclemcalc 7221 axcaucvglemcau 7530 apreap 8161 ltmul1 8166 subap0d 8216 divap1d 8365 div2subap 8399 lemul2a 8417 xleadd2a 9440 monoord2 10043 expubnd 10143 bernneq2 10206 resqrexlemcalc2 10579 resqrexlemcalc3 10580 abs2dif2 10671 bdtrilem 10801 bdtri 10802 xrmaxaddlem 10819 fsum00 11020 iserabs 11033 geosergap 11064 mertenslemi1 11093 eftlub 11144 eirraplem 11228 xblss2 12206 xmstri2 12271 mstri2 12272 xmstri 12273 mstri 12274 xmstri3 12275 mstri3 12276 msrtri 12277 |
Copyright terms: Public domain | W3C validator |