| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr3d | GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
| Ref | Expression |
|---|---|
| 3brtr3d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3brtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3brtr3d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 3 | 3brtr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | breq12d 4047 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷)) |
| 5 | 1, 4 | mpbid 147 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 class class class wbr 4034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: ofrval 6150 phplem2 6923 ltaddnq 7493 prarloclemarch2 7505 prmuloclemcalc 7651 axcaucvglemcau 7984 apreap 8633 ltmul1 8638 divap1d 8847 div2subap 8883 lemul2a 8905 mul2lt0rlt0 9853 xleadd2a 9968 monoord2 10597 expubnd 10707 bernneq2 10772 nn0ltexp2 10820 apexp1 10829 resqrexlemcalc2 11199 resqrexlemcalc3 11200 abs2dif2 11291 bdtrilem 11423 bdtri 11424 xrmaxaddlem 11444 fsum00 11646 iserabs 11659 geosergap 11690 mertenslemi1 11719 eftlub 11874 eirraplem 11961 bitscmp 12142 unitmulcl 13747 unitgrp 13750 xblss2 14749 xmstri2 14814 mstri2 14815 xmstri 14816 mstri 14817 xmstri3 14818 mstri3 14819 msrtri 14820 logdivlti 15225 perfectlem2 15344 2sqlem8 15472 apdifflemr 15804 |
| Copyright terms: Public domain | W3C validator |