| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr3d | GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
| Ref | Expression |
|---|---|
| 3brtr3d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3brtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3brtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3brtr3d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 2 | 3brtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 3 | 3brtr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | breq12d 4095 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷)) |
| 5 | 1, 4 | mpbid 147 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 class class class wbr 4082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 |
| This theorem is referenced by: ofrval 6219 phplem2 7002 ltaddnq 7582 prarloclemarch2 7594 prmuloclemcalc 7740 axcaucvglemcau 8073 apreap 8722 ltmul1 8727 divap1d 8936 div2subap 8972 lemul2a 8994 mul2lt0rlt0 9943 xleadd2a 10058 monoord2 10695 expubnd 10805 bernneq2 10870 nn0ltexp2 10918 apexp1 10927 resqrexlemcalc2 11512 resqrexlemcalc3 11513 abs2dif2 11604 bdtrilem 11736 bdtri 11737 xrmaxaddlem 11757 fsum00 11959 iserabs 11972 geosergap 12003 mertenslemi1 12032 eftlub 12187 eirraplem 12274 bitscmp 12455 unitmulcl 14062 unitgrp 14065 xblss2 15064 xmstri2 15129 mstri2 15130 xmstri 15131 mstri 15132 xmstri3 15133 mstri3 15134 msrtri 15135 logdivlti 15540 perfectlem2 15659 2sqlem8 15787 apdifflemr 16346 |
| Copyright terms: Public domain | W3C validator |