Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3brtr3d | GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 18-Oct-1999.) |
Ref | Expression |
---|---|
3brtr3d.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3brtr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3brtr3d | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr3d.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | 3brtr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | breq12d 3994 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ 𝐶𝑅𝐷)) |
5 | 1, 4 | mpbid 146 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 class class class wbr 3981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 |
This theorem is referenced by: ofrval 6059 phplem2 6815 ltaddnq 7344 prarloclemarch2 7356 prmuloclemcalc 7502 axcaucvglemcau 7835 apreap 8481 ltmul1 8486 divap1d 8693 div2subap 8729 lemul2a 8750 mul2lt0rlt0 9691 xleadd2a 9806 monoord2 10408 expubnd 10508 bernneq2 10572 nn0ltexp2 10619 apexp1 10627 resqrexlemcalc2 10953 resqrexlemcalc3 10954 abs2dif2 11045 bdtrilem 11176 bdtri 11177 xrmaxaddlem 11197 fsum00 11399 iserabs 11412 geosergap 11443 mertenslemi1 11472 eftlub 11627 eirraplem 11713 xblss2 13005 xmstri2 13070 mstri2 13071 xmstri 13072 mstri 13073 xmstri3 13074 mstri3 13075 msrtri 13076 logdivlti 13402 2sqlem8 13559 apdifflemr 13886 |
Copyright terms: Public domain | W3C validator |