![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decle | GIF version |
Description: Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
decle.1 | ⊢ 𝐴 ∈ ℕ0 |
decle.2 | ⊢ 𝐵 ∈ ℕ0 |
decle.3 | ⊢ 𝐶 ∈ ℕ0 |
decle.4 | ⊢ 𝐵 ≤ 𝐶 |
Ref | Expression |
---|---|
decle | ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decle.4 | . . 3 ⊢ 𝐵 ≤ 𝐶 | |
2 | decle.2 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
3 | 2 | nn0rei 9251 | . . . 4 ⊢ 𝐵 ∈ ℝ |
4 | decle.3 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
5 | 4 | nn0rei 9251 | . . . 4 ⊢ 𝐶 ∈ ℝ |
6 | 10nn0 9465 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
7 | decle.1 | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
8 | 6, 7 | nn0mulcli 9278 | . . . . 5 ⊢ (;10 · 𝐴) ∈ ℕ0 |
9 | 8 | nn0rei 9251 | . . . 4 ⊢ (;10 · 𝐴) ∈ ℝ |
10 | 3, 5, 9 | leadd2i 8523 | . . 3 ⊢ (𝐵 ≤ 𝐶 ↔ ((;10 · 𝐴) + 𝐵) ≤ ((;10 · 𝐴) + 𝐶)) |
11 | 1, 10 | mpbi 145 | . 2 ⊢ ((;10 · 𝐴) + 𝐵) ≤ ((;10 · 𝐴) + 𝐶) |
12 | dfdec10 9451 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
13 | dfdec10 9451 | . 2 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
14 | 11, 12, 13 | 3brtr4i 4059 | 1 ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 0cc0 7872 1c1 7873 + caddc 7875 · cmul 7877 ≤ cle 8055 ℕ0cn0 9240 ;cdc 9448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-dec 9449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |