Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > decle | GIF version |
Description: Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
decle.1 | ⊢ 𝐴 ∈ ℕ0 |
decle.2 | ⊢ 𝐵 ∈ ℕ0 |
decle.3 | ⊢ 𝐶 ∈ ℕ0 |
decle.4 | ⊢ 𝐵 ≤ 𝐶 |
Ref | Expression |
---|---|
decle | ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decle.4 | . . 3 ⊢ 𝐵 ≤ 𝐶 | |
2 | decle.2 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
3 | 2 | nn0rei 9080 | . . . 4 ⊢ 𝐵 ∈ ℝ |
4 | decle.3 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
5 | 4 | nn0rei 9080 | . . . 4 ⊢ 𝐶 ∈ ℝ |
6 | 10nn0 9291 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
7 | decle.1 | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
8 | 6, 7 | nn0mulcli 9107 | . . . . 5 ⊢ (;10 · 𝐴) ∈ ℕ0 |
9 | 8 | nn0rei 9080 | . . . 4 ⊢ (;10 · 𝐴) ∈ ℝ |
10 | 3, 5, 9 | leadd2i 8358 | . . 3 ⊢ (𝐵 ≤ 𝐶 ↔ ((;10 · 𝐴) + 𝐵) ≤ ((;10 · 𝐴) + 𝐶)) |
11 | 1, 10 | mpbi 144 | . 2 ⊢ ((;10 · 𝐴) + 𝐵) ≤ ((;10 · 𝐴) + 𝐶) |
12 | dfdec10 9277 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
13 | dfdec10 9277 | . 2 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
14 | 11, 12, 13 | 3brtr4i 3990 | 1 ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2125 class class class wbr 3961 (class class class)co 5814 0cc0 7711 1c1 7712 + caddc 7714 · cmul 7716 ≤ cle 7892 ℕ0cn0 9069 ;cdc 9274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-5 8874 df-6 8875 df-7 8876 df-8 8877 df-9 8878 df-n0 9070 df-dec 9275 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |