| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decle | GIF version | ||
| Description: Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| decle.1 | ⊢ 𝐴 ∈ ℕ0 |
| decle.2 | ⊢ 𝐵 ∈ ℕ0 |
| decle.3 | ⊢ 𝐶 ∈ ℕ0 |
| decle.4 | ⊢ 𝐵 ≤ 𝐶 |
| Ref | Expression |
|---|---|
| decle | ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decle.4 | . . 3 ⊢ 𝐵 ≤ 𝐶 | |
| 2 | decle.2 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 2 | nn0rei 9321 | . . . 4 ⊢ 𝐵 ∈ ℝ |
| 4 | decle.3 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
| 5 | 4 | nn0rei 9321 | . . . 4 ⊢ 𝐶 ∈ ℝ |
| 6 | 10nn0 9536 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 7 | decle.1 | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
| 8 | 6, 7 | nn0mulcli 9348 | . . . . 5 ⊢ (;10 · 𝐴) ∈ ℕ0 |
| 9 | 8 | nn0rei 9321 | . . . 4 ⊢ (;10 · 𝐴) ∈ ℝ |
| 10 | 3, 5, 9 | leadd2i 8592 | . . 3 ⊢ (𝐵 ≤ 𝐶 ↔ ((;10 · 𝐴) + 𝐵) ≤ ((;10 · 𝐴) + 𝐶)) |
| 11 | 1, 10 | mpbi 145 | . 2 ⊢ ((;10 · 𝐴) + 𝐵) ≤ ((;10 · 𝐴) + 𝐶) |
| 12 | dfdec10 9522 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 13 | dfdec10 9522 | . 2 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 14 | 11, 12, 13 | 3brtr4i 4080 | 1 ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 class class class wbr 4050 (class class class)co 5956 0cc0 7940 1c1 7941 + caddc 7943 · cmul 7945 ≤ cle 8123 ℕ0cn0 9310 ;cdc 9519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-5 9113 df-6 9114 df-7 9115 df-8 9116 df-9 9117 df-n0 9311 df-dec 9520 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |