| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decle | GIF version | ||
| Description: Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.) |
| Ref | Expression |
|---|---|
| decle.1 | ⊢ 𝐴 ∈ ℕ0 |
| decle.2 | ⊢ 𝐵 ∈ ℕ0 |
| decle.3 | ⊢ 𝐶 ∈ ℕ0 |
| decle.4 | ⊢ 𝐵 ≤ 𝐶 |
| Ref | Expression |
|---|---|
| decle | ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decle.4 | . . 3 ⊢ 𝐵 ≤ 𝐶 | |
| 2 | decle.2 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 2 | nn0rei 9376 | . . . 4 ⊢ 𝐵 ∈ ℝ |
| 4 | decle.3 | . . . . 5 ⊢ 𝐶 ∈ ℕ0 | |
| 5 | 4 | nn0rei 9376 | . . . 4 ⊢ 𝐶 ∈ ℝ |
| 6 | 10nn0 9591 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 7 | decle.1 | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
| 8 | 6, 7 | nn0mulcli 9403 | . . . . 5 ⊢ (;10 · 𝐴) ∈ ℕ0 |
| 9 | 8 | nn0rei 9376 | . . . 4 ⊢ (;10 · 𝐴) ∈ ℝ |
| 10 | 3, 5, 9 | leadd2i 8647 | . . 3 ⊢ (𝐵 ≤ 𝐶 ↔ ((;10 · 𝐴) + 𝐵) ≤ ((;10 · 𝐴) + 𝐶)) |
| 11 | 1, 10 | mpbi 145 | . 2 ⊢ ((;10 · 𝐴) + 𝐵) ≤ ((;10 · 𝐴) + 𝐶) |
| 12 | dfdec10 9577 | . 2 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 13 | dfdec10 9577 | . 2 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 14 | 11, 12, 13 | 3brtr4i 4112 | 1 ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 0cc0 7995 1c1 7996 + caddc 7998 · cmul 8000 ≤ cle 8178 ℕ0cn0 9365 ;cdc 9574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-dec 9575 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |