ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrri GIF version

Theorem breqtrri 4072
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
breqtrr.1 𝐴𝑅𝐵
breqtrr.2 𝐶 = 𝐵
Assertion
Ref Expression
breqtrri 𝐴𝑅𝐶

Proof of Theorem breqtrri
StepHypRef Expression
1 breqtrr.1 . 2 𝐴𝑅𝐵
2 breqtrr.2 . . 3 𝐶 = 𝐵
32eqcomi 2209 . 2 𝐵 = 𝐶
41, 3breqtri 4070 1 𝐴𝑅𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1373   class class class wbr 4045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046
This theorem is referenced by:  3brtr4i  4075  ensn1  6890  pw1dom2  7341  0lt1sr  7880  0le2  9128  2pos  9129  3pos  9132  4pos  9135  5pos  9138  6pos  9139  7pos  9140  8pos  9141  9pos  9142  1lt2  9208  2lt3  9209  3lt4  9211  4lt5  9214  5lt6  9218  6lt7  9223  7lt8  9229  8lt9  9236  nn0le2xi  9347  numltc  9531  declti  9543  sqge0i  10773  faclbnd2  10889  ege2le3  12015  cos2bnd  12104  3dvdsdec  12209  n2dvdsm1  12257  n2dvds3  12259  pockthi  12714  dec2dvds  12767  dveflem  15231  tangtx  15343  lgsdir2lem2  15539  ex-fl  15698
  Copyright terms: Public domain W3C validator