| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrri | GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2209 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtri 4070 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 class class class wbr 4045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 |
| This theorem is referenced by: 3brtr4i 4075 ensn1 6890 pw1dom2 7341 0lt1sr 7880 0le2 9128 2pos 9129 3pos 9132 4pos 9135 5pos 9138 6pos 9139 7pos 9140 8pos 9141 9pos 9142 1lt2 9208 2lt3 9209 3lt4 9211 4lt5 9214 5lt6 9218 6lt7 9223 7lt8 9229 8lt9 9236 nn0le2xi 9347 numltc 9531 declti 9543 sqge0i 10773 faclbnd2 10889 ege2le3 12015 cos2bnd 12104 3dvdsdec 12209 n2dvdsm1 12257 n2dvds3 12259 pockthi 12714 dec2dvds 12767 dveflem 15231 tangtx 15343 lgsdir2lem2 15539 ex-fl 15698 |
| Copyright terms: Public domain | W3C validator |