ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrri GIF version

Theorem breqtrri 4032
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
breqtrr.1 𝐴𝑅𝐵
breqtrr.2 𝐶 = 𝐵
Assertion
Ref Expression
breqtrri 𝐴𝑅𝐶

Proof of Theorem breqtrri
StepHypRef Expression
1 breqtrr.1 . 2 𝐴𝑅𝐵
2 breqtrr.2 . . 3 𝐶 = 𝐵
32eqcomi 2181 . 2 𝐵 = 𝐶
41, 3breqtri 4030 1 𝐴𝑅𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1353   class class class wbr 4005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006
This theorem is referenced by:  3brtr4i  4035  ensn1  6798  pw1dom2  7228  0lt1sr  7766  0le2  9011  2pos  9012  3pos  9015  4pos  9018  5pos  9021  6pos  9022  7pos  9023  8pos  9024  9pos  9025  1lt2  9090  2lt3  9091  3lt4  9093  4lt5  9096  5lt6  9100  6lt7  9105  7lt8  9111  8lt9  9118  nn0le2xi  9228  numltc  9411  declti  9423  sqge0i  10609  faclbnd2  10724  ege2le3  11681  cos2bnd  11770  3dvdsdec  11872  n2dvdsm1  11920  n2dvds3  11922  pockthi  12358  dveflem  14226  tangtx  14298  lgsdir2lem2  14469  ex-fl  14516
  Copyright terms: Public domain W3C validator