ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrri GIF version

Theorem breqtrri 4056
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
breqtrr.1 𝐴𝑅𝐵
breqtrr.2 𝐶 = 𝐵
Assertion
Ref Expression
breqtrri 𝐴𝑅𝐶

Proof of Theorem breqtrri
StepHypRef Expression
1 breqtrr.1 . 2 𝐴𝑅𝐵
2 breqtrr.2 . . 3 𝐶 = 𝐵
32eqcomi 2197 . 2 𝐵 = 𝐶
41, 3breqtri 4054 1 𝐴𝑅𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364   class class class wbr 4029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030
This theorem is referenced by:  3brtr4i  4059  ensn1  6850  pw1dom2  7287  0lt1sr  7825  0le2  9072  2pos  9073  3pos  9076  4pos  9079  5pos  9082  6pos  9083  7pos  9084  8pos  9085  9pos  9086  1lt2  9151  2lt3  9152  3lt4  9154  4lt5  9157  5lt6  9161  6lt7  9166  7lt8  9172  8lt9  9179  nn0le2xi  9290  numltc  9473  declti  9485  sqge0i  10697  faclbnd2  10813  ege2le3  11814  cos2bnd  11903  3dvdsdec  12006  n2dvdsm1  12054  n2dvds3  12056  pockthi  12496  dveflem  14872  tangtx  14973  lgsdir2lem2  15145  ex-fl  15217
  Copyright terms: Public domain W3C validator