Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breqtrri | GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
breqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
breqtrri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2169 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | breqtri 4007 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: 3brtr4i 4012 ensn1 6762 pw1dom2 7183 0lt1sr 7706 0le2 8947 2pos 8948 3pos 8951 4pos 8954 5pos 8957 6pos 8958 7pos 8959 8pos 8960 9pos 8961 1lt2 9026 2lt3 9027 3lt4 9029 4lt5 9032 5lt6 9036 6lt7 9041 7lt8 9047 8lt9 9054 nn0le2xi 9164 numltc 9347 declti 9359 sqge0i 10541 faclbnd2 10655 ege2le3 11612 cos2bnd 11701 3dvdsdec 11802 n2dvdsm1 11850 n2dvds3 11852 pockthi 12288 dveflem 13327 tangtx 13399 lgsdir2lem2 13570 ex-fl 13606 |
Copyright terms: Public domain | W3C validator |