ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrri GIF version

Theorem breqtrri 3876
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
breqtrr.1 𝐴𝑅𝐵
breqtrr.2 𝐶 = 𝐵
Assertion
Ref Expression
breqtrri 𝐴𝑅𝐶

Proof of Theorem breqtrri
StepHypRef Expression
1 breqtrr.1 . 2 𝐴𝑅𝐵
2 breqtrr.2 . . 3 𝐶 = 𝐵
32eqcomi 2093 . 2 𝐵 = 𝐶
41, 3breqtri 3874 1 𝐴𝑅𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1290   class class class wbr 3851
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-un 3004  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852
This theorem is referenced by:  3brtr4i  3879  ensn1  6567  0lt1sr  7365  0le2  8566  2pos  8567  3pos  8570  4pos  8573  5pos  8576  6pos  8577  7pos  8578  8pos  8579  9pos  8580  1lt2  8639  2lt3  8640  3lt4  8642  4lt5  8645  5lt6  8649  6lt7  8654  7lt8  8660  8lt9  8667  nn0le2xi  8777  numltc  8956  declti  8968  sqge0i  10095  faclbnd2  10204  ege2le3  11015  cos2bnd  11105  3dvdsdec  11197  n2dvdsm1  11245  n2dvds3  11247  ex-fl  11918  pw1dom2  12155
  Copyright terms: Public domain W3C validator