ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrri GIF version

Theorem breqtrri 4110
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
breqtrr.1 𝐴𝑅𝐵
breqtrr.2 𝐶 = 𝐵
Assertion
Ref Expression
breqtrri 𝐴𝑅𝐶

Proof of Theorem breqtrri
StepHypRef Expression
1 breqtrr.1 . 2 𝐴𝑅𝐵
2 breqtrr.2 . . 3 𝐶 = 𝐵
32eqcomi 2233 . 2 𝐵 = 𝐶
41, 3breqtri 4108 1 𝐴𝑅𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1395   class class class wbr 4083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084
This theorem is referenced by:  3brtr4i  4113  ensn1  6948  pw1dom2  7412  0lt1sr  7952  0le2  9200  2pos  9201  3pos  9204  4pos  9207  5pos  9210  6pos  9211  7pos  9212  8pos  9213  9pos  9214  1lt2  9280  2lt3  9281  3lt4  9283  4lt5  9286  5lt6  9290  6lt7  9295  7lt8  9301  8lt9  9308  nn0le2xi  9419  numltc  9603  declti  9615  sqge0i  10848  faclbnd2  10964  ege2le3  12182  cos2bnd  12271  3dvdsdec  12376  n2dvdsm1  12424  n2dvds3  12426  pockthi  12881  dec2dvds  12934  dveflem  15400  tangtx  15512  lgsdir2lem2  15708  ex-fl  16089
  Copyright terms: Public domain W3C validator