| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrri | GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2211 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtri 4084 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 class class class wbr 4059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: 3brtr4i 4089 ensn1 6911 pw1dom2 7373 0lt1sr 7913 0le2 9161 2pos 9162 3pos 9165 4pos 9168 5pos 9171 6pos 9172 7pos 9173 8pos 9174 9pos 9175 1lt2 9241 2lt3 9242 3lt4 9244 4lt5 9247 5lt6 9251 6lt7 9256 7lt8 9262 8lt9 9269 nn0le2xi 9380 numltc 9564 declti 9576 sqge0i 10808 faclbnd2 10924 ege2le3 12097 cos2bnd 12186 3dvdsdec 12291 n2dvdsm1 12339 n2dvds3 12341 pockthi 12796 dec2dvds 12849 dveflem 15313 tangtx 15425 lgsdir2lem2 15621 ex-fl 15861 |
| Copyright terms: Public domain | W3C validator |