![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqtrri | GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
breqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
breqtrri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2093 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | breqtri 3874 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 class class class wbr 3851 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-v 2622 df-un 3004 df-sn 3456 df-pr 3457 df-op 3459 df-br 3852 |
This theorem is referenced by: 3brtr4i 3879 ensn1 6567 0lt1sr 7365 0le2 8566 2pos 8567 3pos 8570 4pos 8573 5pos 8576 6pos 8577 7pos 8578 8pos 8579 9pos 8580 1lt2 8639 2lt3 8640 3lt4 8642 4lt5 8645 5lt6 8649 6lt7 8654 7lt8 8660 8lt9 8667 nn0le2xi 8777 numltc 8956 declti 8968 sqge0i 10095 faclbnd2 10204 ege2le3 11015 cos2bnd 11105 3dvdsdec 11197 n2dvdsm1 11245 n2dvds3 11247 ex-fl 11918 pw1dom2 12155 |
Copyright terms: Public domain | W3C validator |