ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrri GIF version

Theorem breqtrri 4061
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
breqtrr.1 𝐴𝑅𝐵
breqtrr.2 𝐶 = 𝐵
Assertion
Ref Expression
breqtrri 𝐴𝑅𝐶

Proof of Theorem breqtrri
StepHypRef Expression
1 breqtrr.1 . 2 𝐴𝑅𝐵
2 breqtrr.2 . . 3 𝐶 = 𝐵
32eqcomi 2200 . 2 𝐵 = 𝐶
41, 3breqtri 4059 1 𝐴𝑅𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364   class class class wbr 4034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035
This theorem is referenced by:  3brtr4i  4064  ensn1  6864  pw1dom2  7310  0lt1sr  7849  0le2  9097  2pos  9098  3pos  9101  4pos  9104  5pos  9107  6pos  9108  7pos  9109  8pos  9110  9pos  9111  1lt2  9177  2lt3  9178  3lt4  9180  4lt5  9183  5lt6  9187  6lt7  9192  7lt8  9198  8lt9  9205  nn0le2xi  9316  numltc  9499  declti  9511  sqge0i  10735  faclbnd2  10851  ege2le3  11853  cos2bnd  11942  3dvdsdec  12047  n2dvdsm1  12095  n2dvds3  12097  pockthi  12552  dec2dvds  12605  dveflem  15046  tangtx  15158  lgsdir2lem2  15354  ex-fl  15455
  Copyright terms: Public domain W3C validator