| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrri | GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2209 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtri 4069 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 class class class wbr 4044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 |
| This theorem is referenced by: 3brtr4i 4074 ensn1 6888 pw1dom2 7339 0lt1sr 7878 0le2 9126 2pos 9127 3pos 9130 4pos 9133 5pos 9136 6pos 9137 7pos 9138 8pos 9139 9pos 9140 1lt2 9206 2lt3 9207 3lt4 9209 4lt5 9212 5lt6 9216 6lt7 9221 7lt8 9227 8lt9 9234 nn0le2xi 9345 numltc 9529 declti 9541 sqge0i 10771 faclbnd2 10887 ege2le3 11982 cos2bnd 12071 3dvdsdec 12176 n2dvdsm1 12224 n2dvds3 12226 pockthi 12681 dec2dvds 12734 dveflem 15198 tangtx 15310 lgsdir2lem2 15506 ex-fl 15661 |
| Copyright terms: Public domain | W3C validator |