| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breqtrri | GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
| breqtrr.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| breqtrri | ⊢ 𝐴𝑅𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
| 2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2233 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | breqtri 4108 | 1 ⊢ 𝐴𝑅𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 class class class wbr 4083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: 3brtr4i 4113 ensn1 6948 pw1dom2 7412 0lt1sr 7952 0le2 9200 2pos 9201 3pos 9204 4pos 9207 5pos 9210 6pos 9211 7pos 9212 8pos 9213 9pos 9214 1lt2 9280 2lt3 9281 3lt4 9283 4lt5 9286 5lt6 9290 6lt7 9295 7lt8 9301 8lt9 9308 nn0le2xi 9419 numltc 9603 declti 9615 sqge0i 10848 faclbnd2 10964 ege2le3 12182 cos2bnd 12271 3dvdsdec 12376 n2dvdsm1 12424 n2dvds3 12426 pockthi 12881 dec2dvds 12934 dveflem 15400 tangtx 15512 lgsdir2lem2 15708 ex-fl 16089 |
| Copyright terms: Public domain | W3C validator |