ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtrri GIF version

Theorem breqtrri 4071
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
breqtrr.1 𝐴𝑅𝐵
breqtrr.2 𝐶 = 𝐵
Assertion
Ref Expression
breqtrri 𝐴𝑅𝐶

Proof of Theorem breqtrri
StepHypRef Expression
1 breqtrr.1 . 2 𝐴𝑅𝐵
2 breqtrr.2 . . 3 𝐶 = 𝐵
32eqcomi 2209 . 2 𝐵 = 𝐶
41, 3breqtri 4069 1 𝐴𝑅𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1373   class class class wbr 4044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045
This theorem is referenced by:  3brtr4i  4074  ensn1  6888  pw1dom2  7339  0lt1sr  7878  0le2  9126  2pos  9127  3pos  9130  4pos  9133  5pos  9136  6pos  9137  7pos  9138  8pos  9139  9pos  9140  1lt2  9206  2lt3  9207  3lt4  9209  4lt5  9212  5lt6  9216  6lt7  9221  7lt8  9227  8lt9  9234  nn0le2xi  9345  numltc  9529  declti  9541  sqge0i  10771  faclbnd2  10887  ege2le3  11982  cos2bnd  12071  3dvdsdec  12176  n2dvdsm1  12224  n2dvds3  12226  pockthi  12681  dec2dvds  12734  dveflem  15198  tangtx  15310  lgsdir2lem2  15506  ex-fl  15665
  Copyright terms: Public domain W3C validator