![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqtrri | GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
breqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
breqtrri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2197 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | breqtri 4055 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 class class class wbr 4030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 |
This theorem is referenced by: 3brtr4i 4060 ensn1 6852 pw1dom2 7289 0lt1sr 7827 0le2 9074 2pos 9075 3pos 9078 4pos 9081 5pos 9084 6pos 9085 7pos 9086 8pos 9087 9pos 9088 1lt2 9154 2lt3 9155 3lt4 9157 4lt5 9160 5lt6 9164 6lt7 9169 7lt8 9175 8lt9 9182 nn0le2xi 9293 numltc 9476 declti 9488 sqge0i 10700 faclbnd2 10816 ege2le3 11817 cos2bnd 11906 3dvdsdec 12009 n2dvdsm1 12057 n2dvds3 12059 pockthi 12499 dveflem 14905 tangtx 15014 lgsdir2lem2 15186 ex-fl 15287 |
Copyright terms: Public domain | W3C validator |