ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumrpcl GIF version

Theorem isumrpcl 11659
Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumrpcl.1 𝑍 = (ℤ𝑀)
isumrpcl.2 𝑊 = (ℤ𝑁)
isumrpcl.3 (𝜑𝑁𝑍)
isumrpcl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumrpcl.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ+)
isumrpcl.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumrpcl (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ+)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumrpcl
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumrpcl.2 . . 3 𝑊 = (ℤ𝑁)
2 isumrpcl.3 . . . . 5 (𝜑𝑁𝑍)
3 isumrpcl.1 . . . . 5 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2289 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 9610 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 14 . . 3 (𝜑𝑁 ∈ ℤ)
7 uzss 9622 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
84, 7syl 14 . . . . . 6 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
98, 1, 33sstr4g 3226 . . . . 5 (𝜑𝑊𝑍)
109sselda 3183 . . . 4 ((𝜑𝑘𝑊) → 𝑘𝑍)
11 isumrpcl.4 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
1210, 11syldan 282 . . 3 ((𝜑𝑘𝑊) → (𝐹𝑘) = 𝐴)
13 isumrpcl.5 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ+)
1413rpred 9771 . . . 4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
1510, 14syldan 282 . . 3 ((𝜑𝑘𝑊) → 𝐴 ∈ ℝ)
16 isumrpcl.6 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
1711, 13eqeltrd 2273 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ+)
1817rpcnd 9773 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
193, 2, 18iserex 11504 . . . 4 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
2016, 19mpbid 147 . . 3 (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
211, 6, 12, 15, 20isumrecl 11594 . 2 (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ)
22 fveq2 5558 . . . 4 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
2322eleq1d 2265 . . 3 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ+ ↔ (𝐹𝑁) ∈ ℝ+))
2417ralrimiva 2570 . . 3 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℝ+)
2523, 24, 2rspcdva 2873 . 2 (𝜑 → (𝐹𝑁) ∈ ℝ+)
268sselda 3183 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ (ℤ𝑀))
2726, 3eleqtrrdi 2290 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
2827, 17syldan 282 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ+)
29 rpaddcl 9752 . . . . 5 ((𝑘 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑘 + 𝑦) ∈ ℝ+)
3029adantl 277 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑘 + 𝑦) ∈ ℝ+)
316, 28, 30seq3-1 10554 . . 3 (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
32 uzid 9615 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
336, 32syl 14 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑁))
3433, 1eleqtrrdi 2290 . . . 4 (𝜑𝑁𝑊)
3515recnd 8055 . . . . 5 ((𝜑𝑘𝑊) → 𝐴 ∈ ℂ)
361, 6, 12, 35, 20isumclim2 11587 . . . 4 (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘𝑊 𝐴)
379sseld 3182 . . . . . . 7 (𝜑 → (𝑚𝑊𝑚𝑍))
38 fveq2 5558 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
3938eleq1d 2265 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℝ+ ↔ (𝐹𝑚) ∈ ℝ+))
4039rspcv 2864 . . . . . . 7 (𝑚𝑍 → (∀𝑘𝑍 (𝐹𝑘) ∈ ℝ+ → (𝐹𝑚) ∈ ℝ+))
4137, 24, 40syl6ci 1456 . . . . . 6 (𝜑 → (𝑚𝑊 → (𝐹𝑚) ∈ ℝ+))
4241imp 124 . . . . 5 ((𝜑𝑚𝑊) → (𝐹𝑚) ∈ ℝ+)
4342rpred 9771 . . . 4 ((𝜑𝑚𝑊) → (𝐹𝑚) ∈ ℝ)
4442rpge0d 9775 . . . 4 ((𝜑𝑚𝑊) → 0 ≤ (𝐹𝑚))
451, 34, 36, 43, 44climserle 11510 . . 3 (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) ≤ Σ𝑘𝑊 𝐴)
4631, 45eqbrtrrd 4057 . 2 (𝜑 → (𝐹𝑁) ≤ Σ𝑘𝑊 𝐴)
4721, 25, 46rpgecld 9811 1 (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wss 3157  dom cdm 4663  cfv 5258  (class class class)co 5922  cr 7878   + caddc 7882  cle 8062  cz 9326  cuz 9601  +crp 9728  seqcseq 10539  cli 11443  Σcsu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  effsumlt  11857  eirraplem  11942
  Copyright terms: Public domain W3C validator