Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isumrpcl | GIF version |
Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isumrpcl.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumrpcl.2 | ⊢ 𝑊 = (ℤ≥‘𝑁) |
isumrpcl.3 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
isumrpcl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumrpcl.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) |
isumrpcl.6 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumrpcl | ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumrpcl.2 | . . 3 ⊢ 𝑊 = (ℤ≥‘𝑁) | |
2 | isumrpcl.3 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | isumrpcl.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | eleqtrdi 2259 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzelz 9475 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
7 | uzss 9486 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | |
8 | 4, 7 | syl 14 | . . . . . 6 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
9 | 8, 1, 3 | 3sstr4g 3185 | . . . . 5 ⊢ (𝜑 → 𝑊 ⊆ 𝑍) |
10 | 9 | sselda 3142 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ 𝑍) |
11 | isumrpcl.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
12 | 10, 11 | syldan 280 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) = 𝐴) |
13 | isumrpcl.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) | |
14 | 13 | rpred 9632 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) |
15 | 10, 14 | syldan 280 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝐴 ∈ ℝ) |
16 | isumrpcl.6 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
17 | 11, 13 | eqeltrd 2243 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ+) |
18 | 17 | rpcnd 9634 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
19 | 3, 2, 18 | iserex 11280 | . . . 4 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )) |
20 | 16, 19 | mpbid 146 | . . 3 ⊢ (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
21 | 1, 6, 12, 15, 20 | isumrecl 11370 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ) |
22 | fveq2 5486 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) | |
23 | 22 | eleq1d 2235 | . . 3 ⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ+ ↔ (𝐹‘𝑁) ∈ ℝ+)) |
24 | 17 | ralrimiva 2539 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℝ+) |
25 | 23, 24, 2 | rspcdva 2835 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ+) |
26 | 8 | sselda 3142 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
27 | 26, 3 | eleqtrrdi 2260 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
28 | 27, 17 | syldan 280 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℝ+) |
29 | rpaddcl 9613 | . . . . 5 ⊢ ((𝑘 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+) → (𝑘 + 𝑦) ∈ ℝ+) | |
30 | 29 | adantl 275 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+)) → (𝑘 + 𝑦) ∈ ℝ+) |
31 | 6, 28, 30 | seq3-1 10395 | . . 3 ⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
32 | uzid 9480 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘𝑁)) | |
33 | 6, 32 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑁)) |
34 | 33, 1 | eleqtrrdi 2260 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑊) |
35 | 15 | recnd 7927 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝐴 ∈ ℂ) |
36 | 1, 6, 12, 35, 20 | isumclim2 11363 | . . . 4 ⊢ (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑊 𝐴) |
37 | 9 | sseld 3141 | . . . . . . 7 ⊢ (𝜑 → (𝑚 ∈ 𝑊 → 𝑚 ∈ 𝑍)) |
38 | fveq2 5486 | . . . . . . . . 9 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
39 | 38 | eleq1d 2235 | . . . . . . . 8 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℝ+ ↔ (𝐹‘𝑚) ∈ ℝ+)) |
40 | 39 | rspcv 2826 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℝ+ → (𝐹‘𝑚) ∈ ℝ+)) |
41 | 37, 24, 40 | syl6ci 1433 | . . . . . 6 ⊢ (𝜑 → (𝑚 ∈ 𝑊 → (𝐹‘𝑚) ∈ ℝ+)) |
42 | 41 | imp 123 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝐹‘𝑚) ∈ ℝ+) |
43 | 42 | rpred 9632 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝐹‘𝑚) ∈ ℝ) |
44 | 42 | rpge0d 9636 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → 0 ≤ (𝐹‘𝑚)) |
45 | 1, 34, 36, 43, 44 | climserle 11286 | . . 3 ⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) ≤ Σ𝑘 ∈ 𝑊 𝐴) |
46 | 31, 45 | eqbrtrrd 4006 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ≤ Σ𝑘 ∈ 𝑊 𝐴) |
47 | 21, 25, 46 | rpgecld 9672 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ⊆ wss 3116 dom cdm 4604 ‘cfv 5188 (class class class)co 5842 ℝcr 7752 + caddc 7756 ≤ cle 7934 ℤcz 9191 ℤ≥cuz 9466 ℝ+crp 9589 seqcseq 10380 ⇝ cli 11219 Σcsu 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 |
This theorem is referenced by: effsumlt 11633 eirraplem 11717 |
Copyright terms: Public domain | W3C validator |