![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isumrpcl | GIF version |
Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isumrpcl.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumrpcl.2 | ⊢ 𝑊 = (ℤ≥‘𝑁) |
isumrpcl.3 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
isumrpcl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumrpcl.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) |
isumrpcl.6 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumrpcl | ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumrpcl.2 | . . 3 ⊢ 𝑊 = (ℤ≥‘𝑁) | |
2 | isumrpcl.3 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | isumrpcl.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | eleqtrdi 2286 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzelz 9601 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
7 | uzss 9613 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | |
8 | 4, 7 | syl 14 | . . . . . 6 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
9 | 8, 1, 3 | 3sstr4g 3222 | . . . . 5 ⊢ (𝜑 → 𝑊 ⊆ 𝑍) |
10 | 9 | sselda 3179 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ 𝑍) |
11 | isumrpcl.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
12 | 10, 11 | syldan 282 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) = 𝐴) |
13 | isumrpcl.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) | |
14 | 13 | rpred 9762 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) |
15 | 10, 14 | syldan 282 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝐴 ∈ ℝ) |
16 | isumrpcl.6 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
17 | 11, 13 | eqeltrd 2270 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ+) |
18 | 17 | rpcnd 9764 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
19 | 3, 2, 18 | iserex 11482 | . . . 4 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )) |
20 | 16, 19 | mpbid 147 | . . 3 ⊢ (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
21 | 1, 6, 12, 15, 20 | isumrecl 11572 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ) |
22 | fveq2 5554 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) | |
23 | 22 | eleq1d 2262 | . . 3 ⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ+ ↔ (𝐹‘𝑁) ∈ ℝ+)) |
24 | 17 | ralrimiva 2567 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℝ+) |
25 | 23, 24, 2 | rspcdva 2869 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ+) |
26 | 8 | sselda 3179 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
27 | 26, 3 | eleqtrrdi 2287 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ 𝑍) |
28 | 27, 17 | syldan 282 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) ∈ ℝ+) |
29 | rpaddcl 9743 | . . . . 5 ⊢ ((𝑘 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+) → (𝑘 + 𝑦) ∈ ℝ+) | |
30 | 29 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ (𝑘 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+)) → (𝑘 + 𝑦) ∈ ℝ+) |
31 | 6, 28, 30 | seq3-1 10533 | . . 3 ⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
32 | uzid 9606 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘𝑁)) | |
33 | 6, 32 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑁)) |
34 | 33, 1 | eleqtrrdi 2287 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑊) |
35 | 15 | recnd 8048 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝐴 ∈ ℂ) |
36 | 1, 6, 12, 35, 20 | isumclim2 11565 | . . . 4 ⊢ (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑊 𝐴) |
37 | 9 | sseld 3178 | . . . . . . 7 ⊢ (𝜑 → (𝑚 ∈ 𝑊 → 𝑚 ∈ 𝑍)) |
38 | fveq2 5554 | . . . . . . . . 9 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
39 | 38 | eleq1d 2262 | . . . . . . . 8 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℝ+ ↔ (𝐹‘𝑚) ∈ ℝ+)) |
40 | 39 | rspcv 2860 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℝ+ → (𝐹‘𝑚) ∈ ℝ+)) |
41 | 37, 24, 40 | syl6ci 1456 | . . . . . 6 ⊢ (𝜑 → (𝑚 ∈ 𝑊 → (𝐹‘𝑚) ∈ ℝ+)) |
42 | 41 | imp 124 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝐹‘𝑚) ∈ ℝ+) |
43 | 42 | rpred 9762 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝐹‘𝑚) ∈ ℝ) |
44 | 42 | rpge0d 9766 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → 0 ≤ (𝐹‘𝑚)) |
45 | 1, 34, 36, 43, 44 | climserle 11488 | . . 3 ⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) ≤ Σ𝑘 ∈ 𝑊 𝐴) |
46 | 31, 45 | eqbrtrrd 4053 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ≤ Σ𝑘 ∈ 𝑊 𝐴) |
47 | 21, 25, 46 | rpgecld 9802 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ+) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3153 dom cdm 4659 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 + caddc 7875 ≤ cle 8055 ℤcz 9317 ℤ≥cuz 9592 ℝ+crp 9719 seqcseq 10518 ⇝ cli 11421 Σcsu 11496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 |
This theorem is referenced by: effsumlt 11835 eirraplem 11920 |
Copyright terms: Public domain | W3C validator |