ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumrpcl GIF version

Theorem isumrpcl 12013
Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumrpcl.1 𝑍 = (ℤ𝑀)
isumrpcl.2 𝑊 = (ℤ𝑁)
isumrpcl.3 (𝜑𝑁𝑍)
isumrpcl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumrpcl.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ+)
isumrpcl.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumrpcl (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ+)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumrpcl
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumrpcl.2 . . 3 𝑊 = (ℤ𝑁)
2 isumrpcl.3 . . . . 5 (𝜑𝑁𝑍)
3 isumrpcl.1 . . . . 5 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2322 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 9739 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 14 . . 3 (𝜑𝑁 ∈ ℤ)
7 uzss 9751 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
84, 7syl 14 . . . . . 6 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
98, 1, 33sstr4g 3267 . . . . 5 (𝜑𝑊𝑍)
109sselda 3224 . . . 4 ((𝜑𝑘𝑊) → 𝑘𝑍)
11 isumrpcl.4 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
1210, 11syldan 282 . . 3 ((𝜑𝑘𝑊) → (𝐹𝑘) = 𝐴)
13 isumrpcl.5 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ+)
1413rpred 9900 . . . 4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
1510, 14syldan 282 . . 3 ((𝜑𝑘𝑊) → 𝐴 ∈ ℝ)
16 isumrpcl.6 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
1711, 13eqeltrd 2306 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ+)
1817rpcnd 9902 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
193, 2, 18iserex 11858 . . . 4 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
2016, 19mpbid 147 . . 3 (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
211, 6, 12, 15, 20isumrecl 11948 . 2 (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ)
22 fveq2 5629 . . . 4 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
2322eleq1d 2298 . . 3 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ+ ↔ (𝐹𝑁) ∈ ℝ+))
2417ralrimiva 2603 . . 3 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℝ+)
2523, 24, 2rspcdva 2912 . 2 (𝜑 → (𝐹𝑁) ∈ ℝ+)
268sselda 3224 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ (ℤ𝑀))
2726, 3eleqtrrdi 2323 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
2827, 17syldan 282 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ+)
29 rpaddcl 9881 . . . . 5 ((𝑘 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑘 + 𝑦) ∈ ℝ+)
3029adantl 277 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑘 + 𝑦) ∈ ℝ+)
316, 28, 30seq3-1 10692 . . 3 (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
32 uzid 9744 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
336, 32syl 14 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑁))
3433, 1eleqtrrdi 2323 . . . 4 (𝜑𝑁𝑊)
3515recnd 8183 . . . . 5 ((𝜑𝑘𝑊) → 𝐴 ∈ ℂ)
361, 6, 12, 35, 20isumclim2 11941 . . . 4 (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘𝑊 𝐴)
379sseld 3223 . . . . . . 7 (𝜑 → (𝑚𝑊𝑚𝑍))
38 fveq2 5629 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
3938eleq1d 2298 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℝ+ ↔ (𝐹𝑚) ∈ ℝ+))
4039rspcv 2903 . . . . . . 7 (𝑚𝑍 → (∀𝑘𝑍 (𝐹𝑘) ∈ ℝ+ → (𝐹𝑚) ∈ ℝ+))
4137, 24, 40syl6ci 1488 . . . . . 6 (𝜑 → (𝑚𝑊 → (𝐹𝑚) ∈ ℝ+))
4241imp 124 . . . . 5 ((𝜑𝑚𝑊) → (𝐹𝑚) ∈ ℝ+)
4342rpred 9900 . . . 4 ((𝜑𝑚𝑊) → (𝐹𝑚) ∈ ℝ)
4442rpge0d 9904 . . . 4 ((𝜑𝑚𝑊) → 0 ≤ (𝐹𝑚))
451, 34, 36, 43, 44climserle 11864 . . 3 (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) ≤ Σ𝑘𝑊 𝐴)
4631, 45eqbrtrrd 4107 . 2 (𝜑 → (𝐹𝑁) ≤ Σ𝑘𝑊 𝐴)
4721, 25, 46rpgecld 9940 1 (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  wss 3197  dom cdm 4719  cfv 5318  (class class class)co 6007  cr 8006   + caddc 8010  cle 8190  cz 9454  cuz 9730  +crp 9857  seqcseq 10677  cli 11797  Σcsu 11872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873
This theorem is referenced by:  effsumlt  12211  eirraplem  12296
  Copyright terms: Public domain W3C validator