ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumrpcl GIF version

Theorem isumrpcl 11849
Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumrpcl.1 𝑍 = (ℤ𝑀)
isumrpcl.2 𝑊 = (ℤ𝑁)
isumrpcl.3 (𝜑𝑁𝑍)
isumrpcl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumrpcl.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ+)
isumrpcl.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumrpcl (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ+)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumrpcl
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumrpcl.2 . . 3 𝑊 = (ℤ𝑁)
2 isumrpcl.3 . . . . 5 (𝜑𝑁𝑍)
3 isumrpcl.1 . . . . 5 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2299 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 9664 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 14 . . 3 (𝜑𝑁 ∈ ℤ)
7 uzss 9676 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
84, 7syl 14 . . . . . 6 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
98, 1, 33sstr4g 3237 . . . . 5 (𝜑𝑊𝑍)
109sselda 3194 . . . 4 ((𝜑𝑘𝑊) → 𝑘𝑍)
11 isumrpcl.4 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
1210, 11syldan 282 . . 3 ((𝜑𝑘𝑊) → (𝐹𝑘) = 𝐴)
13 isumrpcl.5 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ+)
1413rpred 9825 . . . 4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
1510, 14syldan 282 . . 3 ((𝜑𝑘𝑊) → 𝐴 ∈ ℝ)
16 isumrpcl.6 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
1711, 13eqeltrd 2283 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ+)
1817rpcnd 9827 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
193, 2, 18iserex 11694 . . . 4 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
2016, 19mpbid 147 . . 3 (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
211, 6, 12, 15, 20isumrecl 11784 . 2 (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ)
22 fveq2 5583 . . . 4 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
2322eleq1d 2275 . . 3 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ+ ↔ (𝐹𝑁) ∈ ℝ+))
2417ralrimiva 2580 . . 3 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℝ+)
2523, 24, 2rspcdva 2883 . 2 (𝜑 → (𝐹𝑁) ∈ ℝ+)
268sselda 3194 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ (ℤ𝑀))
2726, 3eleqtrrdi 2300 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
2827, 17syldan 282 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ+)
29 rpaddcl 9806 . . . . 5 ((𝑘 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑘 + 𝑦) ∈ ℝ+)
3029adantl 277 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑘 + 𝑦) ∈ ℝ+)
316, 28, 30seq3-1 10614 . . 3 (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
32 uzid 9669 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
336, 32syl 14 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑁))
3433, 1eleqtrrdi 2300 . . . 4 (𝜑𝑁𝑊)
3515recnd 8108 . . . . 5 ((𝜑𝑘𝑊) → 𝐴 ∈ ℂ)
361, 6, 12, 35, 20isumclim2 11777 . . . 4 (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘𝑊 𝐴)
379sseld 3193 . . . . . . 7 (𝜑 → (𝑚𝑊𝑚𝑍))
38 fveq2 5583 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
3938eleq1d 2275 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℝ+ ↔ (𝐹𝑚) ∈ ℝ+))
4039rspcv 2874 . . . . . . 7 (𝑚𝑍 → (∀𝑘𝑍 (𝐹𝑘) ∈ ℝ+ → (𝐹𝑚) ∈ ℝ+))
4137, 24, 40syl6ci 1466 . . . . . 6 (𝜑 → (𝑚𝑊 → (𝐹𝑚) ∈ ℝ+))
4241imp 124 . . . . 5 ((𝜑𝑚𝑊) → (𝐹𝑚) ∈ ℝ+)
4342rpred 9825 . . . 4 ((𝜑𝑚𝑊) → (𝐹𝑚) ∈ ℝ)
4442rpge0d 9829 . . . 4 ((𝜑𝑚𝑊) → 0 ≤ (𝐹𝑚))
451, 34, 36, 43, 44climserle 11700 . . 3 (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) ≤ Σ𝑘𝑊 𝐴)
4631, 45eqbrtrrd 4071 . 2 (𝜑 → (𝐹𝑁) ≤ Σ𝑘𝑊 𝐴)
4721, 25, 46rpgecld 9865 1 (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ+)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  wss 3167  dom cdm 4679  cfv 5276  (class class class)co 5951  cr 7931   + caddc 7935  cle 8115  cz 9379  cuz 9655  +crp 9782  seqcseq 10599  cli 11633  Σcsu 11708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709
This theorem is referenced by:  effsumlt  12047  eirraplem  12132
  Copyright terms: Public domain W3C validator