![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4t4e16 | GIF version |
Description: 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
4t4e16 | ⊢ (4 · 4) = ;16 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 9213 | . 2 ⊢ 4 ∈ ℕ0 | |
2 | 3nn0 9212 | . 2 ⊢ 3 ∈ ℕ0 | |
3 | df-4 8998 | . 2 ⊢ 4 = (3 + 1) | |
4 | 4t3e12 9499 | . 2 ⊢ (4 · 3) = ;12 | |
5 | 1nn0 9210 | . . 3 ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 9211 | . . 3 ⊢ 2 ∈ ℕ0 | |
7 | eqid 2189 | . . 3 ⊢ ;12 = ;12 | |
8 | 4cn 9015 | . . . 4 ⊢ 4 ∈ ℂ | |
9 | 2cn 9008 | . . . 4 ⊢ 2 ∈ ℂ | |
10 | 4p2e6 9080 | . . . 4 ⊢ (4 + 2) = 6 | |
11 | 8, 9, 10 | addcomli 8120 | . . 3 ⊢ (2 + 4) = 6 |
12 | 5, 6, 1, 7, 11 | decaddi 9461 | . 2 ⊢ (;12 + 4) = ;16 |
13 | 1, 2, 3, 4, 12 | 4t3lem 9498 | 1 ⊢ (4 · 4) = ;16 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5891 1c1 7830 · cmul 7834 2c2 8988 3c3 8989 4c4 8990 6c6 8992 ;cdc 9402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-addcom 7929 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-i2m1 7934 ax-1rid 7936 ax-0id 7937 ax-rnegex 7938 ax-cnre 7940 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-iota 5193 df-fun 5233 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-sub 8148 df-inn 8938 df-2 8996 df-3 8997 df-4 8998 df-5 8999 df-6 9000 df-7 9001 df-8 9002 df-9 9003 df-n0 9195 df-dec 9403 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |