Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4t4e16 | GIF version |
Description: 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
4t4e16 | ⊢ (4 · 4) = ;16 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn0 9129 | . 2 ⊢ 4 ∈ ℕ0 | |
2 | 3nn0 9128 | . 2 ⊢ 3 ∈ ℕ0 | |
3 | df-4 8914 | . 2 ⊢ 4 = (3 + 1) | |
4 | 4t3e12 9415 | . 2 ⊢ (4 · 3) = ;12 | |
5 | 1nn0 9126 | . . 3 ⊢ 1 ∈ ℕ0 | |
6 | 2nn0 9127 | . . 3 ⊢ 2 ∈ ℕ0 | |
7 | eqid 2165 | . . 3 ⊢ ;12 = ;12 | |
8 | 4cn 8931 | . . . 4 ⊢ 4 ∈ ℂ | |
9 | 2cn 8924 | . . . 4 ⊢ 2 ∈ ℂ | |
10 | 4p2e6 8996 | . . . 4 ⊢ (4 + 2) = 6 | |
11 | 8, 9, 10 | addcomli 8039 | . . 3 ⊢ (2 + 4) = 6 |
12 | 5, 6, 1, 7, 11 | decaddi 9377 | . 2 ⊢ (;12 + 4) = ;16 |
13 | 1, 2, 3, 4, 12 | 4t3lem 9414 | 1 ⊢ (4 · 4) = ;16 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5841 1c1 7750 · cmul 7754 2c2 8904 3c3 8905 4c4 8906 6c6 8908 ;cdc 9318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-sub 8067 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-5 8915 df-6 8916 df-7 8917 df-8 8918 df-9 8919 df-n0 9111 df-dec 9319 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |