| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4t4e16 | GIF version | ||
| Description: 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4t4e16 | ⊢ (4 · 4) = ;16 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 9349 | . 2 ⊢ 4 ∈ ℕ0 | |
| 2 | 3nn0 9348 | . 2 ⊢ 3 ∈ ℕ0 | |
| 3 | df-4 9132 | . 2 ⊢ 4 = (3 + 1) | |
| 4 | 4t3e12 9636 | . 2 ⊢ (4 · 3) = ;12 | |
| 5 | 1nn0 9346 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 6 | 2nn0 9347 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 7 | eqid 2207 | . . 3 ⊢ ;12 = ;12 | |
| 8 | 4cn 9149 | . . . 4 ⊢ 4 ∈ ℂ | |
| 9 | 2cn 9142 | . . . 4 ⊢ 2 ∈ ℂ | |
| 10 | 4p2e6 9215 | . . . 4 ⊢ (4 + 2) = 6 | |
| 11 | 8, 9, 10 | addcomli 8252 | . . 3 ⊢ (2 + 4) = 6 |
| 12 | 5, 6, 1, 7, 11 | decaddi 9598 | . 2 ⊢ (;12 + 4) = ;16 |
| 13 | 1, 2, 3, 4, 12 | 4t3lem 9635 | 1 ⊢ (4 · 4) = ;16 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5967 1c1 7961 · cmul 7965 2c2 9122 3c3 9123 4c4 9124 6c6 9126 ;cdc 9539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-n0 9331 df-dec 9540 |
| This theorem is referenced by: 2exp4 12869 |
| Copyright terms: Public domain | W3C validator |