![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expnegzap | GIF version |
Description: Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
expnegzap | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0 9281 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | |
2 | expnegap0 10541 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | |
3 | 2 | 3expia 1206 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁)))) |
4 | 3 | adantr 276 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℝ) → (𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁)))) |
5 | simpl 109 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴 ∈ ℂ ∧ 𝐴 # 0)) | |
6 | simprl 529 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℝ) | |
7 | 6 | recnd 7999 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ) |
8 | simprr 531 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0) | |
9 | expineg2 10542 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) | |
10 | 5, 7, 8, 9 | syl12anc 1246 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) |
11 | 10 | oveq2d 5904 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (1 / (𝐴↑𝑁)) = (1 / (1 / (𝐴↑-𝑁)))) |
12 | expcl 10551 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) ∈ ℂ) | |
13 | 12 | ad2ant2rl 511 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) ∈ ℂ) |
14 | simpll 527 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝐴 ∈ ℂ) | |
15 | simplr 528 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝐴 # 0) | |
16 | 8 | nn0zd 9386 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℤ) |
17 | expap0i 10565 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) # 0) | |
18 | 14, 15, 16, 17 | syl3anc 1248 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) # 0) |
19 | 13, 18 | recrecapd 8755 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (1 / (1 / (𝐴↑-𝑁))) = (𝐴↑-𝑁)) |
20 | 11, 19 | eqtr2d 2221 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
21 | 20 | expr 375 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℝ) → (-𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁)))) |
22 | 4, 21 | jaod 718 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑁 ∈ ℝ) → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁)))) |
23 | 22 | expimpd 363 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁)))) |
24 | 1, 23 | biimtrid 152 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑁 ∈ ℤ → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁)))) |
25 | 24 | 3impia 1201 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 class class class wbr 4015 (class class class)co 5888 ℂcc 7822 ℝcr 7823 0cc0 7824 1c1 7825 -cneg 8142 # cap 8551 / cdiv 8642 ℕ0cn0 9189 ℤcz 9266 ↑cexp 10532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-mulrcl 7923 ax-addcom 7924 ax-mulcom 7925 ax-addass 7926 ax-mulass 7927 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-1rid 7931 ax-0id 7932 ax-rnegex 7933 ax-precex 7934 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-apti 7939 ax-pre-ltadd 7940 ax-pre-mulgt0 7941 ax-pre-mulext 7942 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-recs 6319 df-frec 6405 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-reap 8545 df-ap 8552 df-div 8643 df-inn 8933 df-n0 9190 df-z 9267 df-uz 9542 df-seqfrec 10459 df-exp 10533 |
This theorem is referenced by: expsubap 10581 expnegapd 10674 |
Copyright terms: Public domain | W3C validator |