ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzomelpfzo GIF version

Theorem elfzomelpfzo 10123
Description: An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
elfzomelpfzo (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁)))

Proof of Theorem elfzomelpfzo
StepHypRef Expression
1 zsubcl 9202 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑀𝐿) ∈ ℤ)
21ad2ant2rl 503 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑀𝐿) ∈ ℤ)
3 simpl 108 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
43adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑀 ∈ ℤ)
52, 42thd 174 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑀𝐿) ∈ ℤ ↔ 𝑀 ∈ ℤ))
6 simpl 108 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℤ)
76adantl 275 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐾 ∈ ℤ)
8 zaddcl 9201 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐾 + 𝐿) ∈ ℤ)
98adantl 275 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 + 𝐿) ∈ ℤ)
107, 92thd 174 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ℤ ↔ (𝐾 + 𝐿) ∈ ℤ))
11 zre 9165 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantr 274 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
1312adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑀 ∈ ℝ)
14 zre 9165 . . . . . . . 8 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1514adantl 275 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
1615adantl 275 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐿 ∈ ℝ)
17 zre 9165 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1817adantr 274 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℝ)
1918adantl 275 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐾 ∈ ℝ)
2013, 16, 19lesubaddd 8411 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑀𝐿) ≤ 𝐾𝑀 ≤ (𝐾 + 𝐿)))
215, 10, 203anbi123d 1294 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (((𝑀𝐿) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀𝐿) ≤ 𝐾) ↔ (𝑀 ∈ ℤ ∧ (𝐾 + 𝐿) ∈ ℤ ∧ 𝑀 ≤ (𝐾 + 𝐿))))
22 eluz2 9439 . . . 4 (𝐾 ∈ (ℤ‘(𝑀𝐿)) ↔ ((𝑀𝐿) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀𝐿) ≤ 𝐾))
23 eluz2 9439 . . . 4 ((𝐾 + 𝐿) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝐾 + 𝐿) ∈ ℤ ∧ 𝑀 ≤ (𝐾 + 𝐿)))
2421, 22, 233bitr4g 222 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ (ℤ‘(𝑀𝐿)) ↔ (𝐾 + 𝐿) ∈ (ℤ𝑀)))
25 zsubcl 9202 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
2625ad2ant2l 500 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑁𝐿) ∈ ℤ)
27 simplr 520 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑁 ∈ ℤ)
2826, 272thd 174 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑁𝐿) ∈ ℤ ↔ 𝑁 ∈ ℤ))
29 zre 9165 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3029adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
3130adantr 274 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑁 ∈ ℝ)
3219, 16, 31ltaddsubd 8414 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐾 + 𝐿) < 𝑁𝐾 < (𝑁𝐿)))
3332bicomd 140 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 < (𝑁𝐿) ↔ (𝐾 + 𝐿) < 𝑁))
3424, 28, 333anbi123d 1294 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐾 ∈ (ℤ‘(𝑀𝐿)) ∧ (𝑁𝐿) ∈ ℤ ∧ 𝐾 < (𝑁𝐿)) ↔ ((𝐾 + 𝐿) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 + 𝐿) < 𝑁)))
35 elfzo2 10042 . 2 (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 ∈ (ℤ‘(𝑀𝐿)) ∧ (𝑁𝐿) ∈ ℤ ∧ 𝐾 < (𝑁𝐿)))
36 elfzo2 10042 . 2 ((𝐾 + 𝐿) ∈ (𝑀..^𝑁) ↔ ((𝐾 + 𝐿) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 + 𝐿) < 𝑁))
3734, 35, 363bitr4g 222 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963  wcel 2128   class class class wbr 3965  cfv 5169  (class class class)co 5821  cr 7725   + caddc 7729   < clt 7906  cle 7907  cmin 8040  cz 9161  cuz 9433  ..^cfzo 10034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-ltadd 7842
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-inn 8828  df-n0 9085  df-z 9162  df-uz 9434  df-fz 9906  df-fzo 10035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator