ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzomelpfzo GIF version

Theorem elfzomelpfzo 9948
Description: An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
elfzomelpfzo (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁)))

Proof of Theorem elfzomelpfzo
StepHypRef Expression
1 zsubcl 9046 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑀𝐿) ∈ ℤ)
21ad2ant2rl 500 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑀𝐿) ∈ ℤ)
3 simpl 108 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
43adantr 272 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑀 ∈ ℤ)
52, 42thd 174 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑀𝐿) ∈ ℤ ↔ 𝑀 ∈ ℤ))
6 simpl 108 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℤ)
76adantl 273 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐾 ∈ ℤ)
8 zaddcl 9045 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐾 + 𝐿) ∈ ℤ)
98adantl 273 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 + 𝐿) ∈ ℤ)
107, 92thd 174 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ℤ ↔ (𝐾 + 𝐿) ∈ ℤ))
11 zre 9009 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantr 272 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
1312adantr 272 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑀 ∈ ℝ)
14 zre 9009 . . . . . . . 8 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1514adantl 273 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
1615adantl 273 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐿 ∈ ℝ)
17 zre 9009 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1817adantr 272 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℝ)
1918adantl 273 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐾 ∈ ℝ)
2013, 16, 19lesubaddd 8267 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑀𝐿) ≤ 𝐾𝑀 ≤ (𝐾 + 𝐿)))
215, 10, 203anbi123d 1273 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (((𝑀𝐿) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀𝐿) ≤ 𝐾) ↔ (𝑀 ∈ ℤ ∧ (𝐾 + 𝐿) ∈ ℤ ∧ 𝑀 ≤ (𝐾 + 𝐿))))
22 eluz2 9281 . . . 4 (𝐾 ∈ (ℤ‘(𝑀𝐿)) ↔ ((𝑀𝐿) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀𝐿) ≤ 𝐾))
23 eluz2 9281 . . . 4 ((𝐾 + 𝐿) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝐾 + 𝐿) ∈ ℤ ∧ 𝑀 ≤ (𝐾 + 𝐿)))
2421, 22, 233bitr4g 222 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ (ℤ‘(𝑀𝐿)) ↔ (𝐾 + 𝐿) ∈ (ℤ𝑀)))
25 zsubcl 9046 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
2625ad2ant2l 497 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑁𝐿) ∈ ℤ)
27 simplr 502 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑁 ∈ ℤ)
2826, 272thd 174 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑁𝐿) ∈ ℤ ↔ 𝑁 ∈ ℤ))
29 zre 9009 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3029adantl 273 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
3130adantr 272 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑁 ∈ ℝ)
3219, 16, 31ltaddsubd 8270 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐾 + 𝐿) < 𝑁𝐾 < (𝑁𝐿)))
3332bicomd 140 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 < (𝑁𝐿) ↔ (𝐾 + 𝐿) < 𝑁))
3424, 28, 333anbi123d 1273 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐾 ∈ (ℤ‘(𝑀𝐿)) ∧ (𝑁𝐿) ∈ ℤ ∧ 𝐾 < (𝑁𝐿)) ↔ ((𝐾 + 𝐿) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 + 𝐿) < 𝑁)))
35 elfzo2 9867 . 2 (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 ∈ (ℤ‘(𝑀𝐿)) ∧ (𝑁𝐿) ∈ ℤ ∧ 𝐾 < (𝑁𝐿)))
36 elfzo2 9867 . 2 ((𝐾 + 𝐿) ∈ (𝑀..^𝑁) ↔ ((𝐾 + 𝐿) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 + 𝐿) < 𝑁))
3734, 35, 363bitr4g 222 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 945  wcel 1463   class class class wbr 3897  cfv 5091  (class class class)co 5740  cr 7583   + caddc 7587   < clt 7764  cle 7765  cmin 7897  cz 9005  cuz 9275  ..^cfzo 9859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-inn 8678  df-n0 8929  df-z 9006  df-uz 9276  df-fz 9731  df-fzo 9860
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator