ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzomelpfzo GIF version

Theorem elfzomelpfzo 10008
Description: An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
elfzomelpfzo (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁)))

Proof of Theorem elfzomelpfzo
StepHypRef Expression
1 zsubcl 9095 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑀𝐿) ∈ ℤ)
21ad2ant2rl 502 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑀𝐿) ∈ ℤ)
3 simpl 108 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
43adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑀 ∈ ℤ)
52, 42thd 174 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑀𝐿) ∈ ℤ ↔ 𝑀 ∈ ℤ))
6 simpl 108 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℤ)
76adantl 275 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐾 ∈ ℤ)
8 zaddcl 9094 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐾 + 𝐿) ∈ ℤ)
98adantl 275 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 + 𝐿) ∈ ℤ)
107, 92thd 174 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ℤ ↔ (𝐾 + 𝐿) ∈ ℤ))
11 zre 9058 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantr 274 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
1312adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑀 ∈ ℝ)
14 zre 9058 . . . . . . . 8 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1514adantl 275 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
1615adantl 275 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐿 ∈ ℝ)
17 zre 9058 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1817adantr 274 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℝ)
1918adantl 275 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐾 ∈ ℝ)
2013, 16, 19lesubaddd 8304 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑀𝐿) ≤ 𝐾𝑀 ≤ (𝐾 + 𝐿)))
215, 10, 203anbi123d 1290 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (((𝑀𝐿) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀𝐿) ≤ 𝐾) ↔ (𝑀 ∈ ℤ ∧ (𝐾 + 𝐿) ∈ ℤ ∧ 𝑀 ≤ (𝐾 + 𝐿))))
22 eluz2 9332 . . . 4 (𝐾 ∈ (ℤ‘(𝑀𝐿)) ↔ ((𝑀𝐿) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀𝐿) ≤ 𝐾))
23 eluz2 9332 . . . 4 ((𝐾 + 𝐿) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝐾 + 𝐿) ∈ ℤ ∧ 𝑀 ≤ (𝐾 + 𝐿)))
2421, 22, 233bitr4g 222 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ (ℤ‘(𝑀𝐿)) ↔ (𝐾 + 𝐿) ∈ (ℤ𝑀)))
25 zsubcl 9095 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
2625ad2ant2l 499 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑁𝐿) ∈ ℤ)
27 simplr 519 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑁 ∈ ℤ)
2826, 272thd 174 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑁𝐿) ∈ ℤ ↔ 𝑁 ∈ ℤ))
29 zre 9058 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3029adantl 275 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
3130adantr 274 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑁 ∈ ℝ)
3219, 16, 31ltaddsubd 8307 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐾 + 𝐿) < 𝑁𝐾 < (𝑁𝐿)))
3332bicomd 140 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 < (𝑁𝐿) ↔ (𝐾 + 𝐿) < 𝑁))
3424, 28, 333anbi123d 1290 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐾 ∈ (ℤ‘(𝑀𝐿)) ∧ (𝑁𝐿) ∈ ℤ ∧ 𝐾 < (𝑁𝐿)) ↔ ((𝐾 + 𝐿) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 + 𝐿) < 𝑁)))
35 elfzo2 9927 . 2 (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 ∈ (ℤ‘(𝑀𝐿)) ∧ (𝑁𝐿) ∈ ℤ ∧ 𝐾 < (𝑁𝐿)))
36 elfzo2 9927 . 2 ((𝐾 + 𝐿) ∈ (𝑀..^𝑁) ↔ ((𝐾 + 𝐿) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 + 𝐿) < 𝑁))
3734, 35, 363bitr4g 222 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cr 7619   + caddc 7623   < clt 7800  cle 7801  cmin 7933  cz 9054  cuz 9326  ..^cfzo 9919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-fzo 9920
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator