ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplmulf1o GIF version

Theorem grplmulf1o 13450
Description: Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
grplmulf1o.b 𝐵 = (Base‘𝐺)
grplmulf1o.p + = (+g𝐺)
grplmulf1o.n 𝐹 = (𝑥𝐵 ↦ (𝑋 + 𝑥))
Assertion
Ref Expression
grplmulf1o ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥, +   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem grplmulf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grplmulf1o.n . 2 𝐹 = (𝑥𝐵 ↦ (𝑋 + 𝑥))
2 grplmulf1o.b . . . 4 𝐵 = (Base‘𝐺)
3 grplmulf1o.p . . . 4 + = (+g𝐺)
42, 3grpcl 13384 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑥𝐵) → (𝑋 + 𝑥) ∈ 𝐵)
543expa 1206 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 + 𝑥) ∈ 𝐵)
6 eqid 2206 . . . 4 (invg𝐺) = (invg𝐺)
72, 6grpinvcl 13424 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
82, 3grpcl 13384 . . . 4 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑋) ∈ 𝐵𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
983expa 1206 . . 3 (((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑋) ∈ 𝐵) ∧ 𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
107, 9syldanl 449 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑦𝐵) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
11 eqcom 2208 . . 3 (𝑥 = (((invg𝐺)‘𝑋) + 𝑦) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥)
12 simpll 527 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
1310adantrl 478 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵)
14 simprl 529 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
15 simplr 528 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑋𝐵)
162, 3grplcan 13438 . . . . 5 ((𝐺 ∈ Grp ∧ ((((invg𝐺)‘𝑋) + 𝑦) ∈ 𝐵𝑥𝐵𝑋𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥))
1712, 13, 14, 15, 16syl13anc 1252 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ (((invg𝐺)‘𝑋) + 𝑦) = 𝑥))
18 eqid 2206 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
192, 3, 18, 6grprinv 13427 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + ((invg𝐺)‘𝑋)) = (0g𝐺))
2019adantr 276 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋 + ((invg𝐺)‘𝑋)) = (0g𝐺))
2120oveq1d 5966 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + ((invg𝐺)‘𝑋)) + 𝑦) = ((0g𝐺) + 𝑦))
227adantr 276 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((invg𝐺)‘𝑋) ∈ 𝐵)
23 simprr 531 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
242, 3grpass 13385 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ ((invg𝐺)‘𝑋) ∈ 𝐵𝑦𝐵)) → ((𝑋 + ((invg𝐺)‘𝑋)) + 𝑦) = (𝑋 + (((invg𝐺)‘𝑋) + 𝑦)))
2512, 15, 22, 23, 24syl13anc 1252 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + ((invg𝐺)‘𝑋)) + 𝑦) = (𝑋 + (((invg𝐺)‘𝑋) + 𝑦)))
262, 3, 18grplid 13407 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((0g𝐺) + 𝑦) = 𝑦)
2726ad2ant2rl 511 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((0g𝐺) + 𝑦) = 𝑦)
2821, 25, 273eqtr3d 2247 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = 𝑦)
2928eqeq1d 2215 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑋 + (((invg𝐺)‘𝑋) + 𝑦)) = (𝑋 + 𝑥) ↔ 𝑦 = (𝑋 + 𝑥)))
3017, 29bitr3d 190 . . 3 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → ((((invg𝐺)‘𝑋) + 𝑦) = 𝑥𝑦 = (𝑋 + 𝑥)))
3111, 30bitrid 192 . 2 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (((invg𝐺)‘𝑋) + 𝑦) ↔ 𝑦 = (𝑋 + 𝑥)))
321, 5, 10, 31f1o2d 6158 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  cmpt 4109  1-1-ontowf1o 5275  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  0gc0g 13132  Grpcgrp 13376  invgcminusg 13377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator