ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnfi GIF version

Theorem infnfi 7013
Description: An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
infnfi (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)

Proof of Theorem infnfi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 isfi 6870 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . . . 4 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantl 277 . . 3 ((ω ≼ 𝐴𝐴 ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 omex 4654 . . . . . 6 ω ∈ V
5 ordom 4668 . . . . . . 7 Ord ω
6 peano2 4656 . . . . . . . 8 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
76ad2antrl 490 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛 ∈ ω)
8 ordelss 4439 . . . . . . 7 ((Ord ω ∧ suc 𝑛 ∈ ω) → suc 𝑛 ⊆ ω)
95, 7, 8sylancr 414 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛 ⊆ ω)
10 ssdomg 6888 . . . . . 6 (ω ∈ V → (suc 𝑛 ⊆ ω → suc 𝑛 ≼ ω))
114, 9, 10mpsyl 65 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛 ≼ ω)
12 domentr 6901 . . . . . 6 ((ω ≼ 𝐴𝐴𝑛) → ω ≼ 𝑛)
1312ad2ant2rl 511 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ω ≼ 𝑛)
14 domtr 6895 . . . . 5 ((suc 𝑛 ≼ ω ∧ ω ≼ 𝑛) → suc 𝑛𝑛)
1511, 13, 14syl2anc 411 . . . 4 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛𝑛)
16 php5dom 6980 . . . . 5 (𝑛 ∈ ω → ¬ suc 𝑛𝑛)
1716ad2antrl 490 . . . 4 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ suc 𝑛𝑛)
1815, 17pm2.21dd 621 . . 3 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ 𝐴 ∈ Fin)
193, 18rexlimddv 2629 . 2 ((ω ≼ 𝐴𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
2019pm2.01da 637 1 (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2177  wrex 2486  Vcvv 2773  wss 3170   class class class wbr 4054  Ord word 4422  suc csuc 4425  ωcom 4651  cen 6843  cdom 6844  Fincfn 6845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-er 6638  df-en 6846  df-dom 6847  df-fin 6848
This theorem is referenced by:  ominf  7014  hashennnuni  10956
  Copyright terms: Public domain W3C validator