ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnfi GIF version

Theorem infnfi 6951
Description: An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
infnfi (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)

Proof of Theorem infnfi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 isfi 6815 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . . . 4 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantl 277 . . 3 ((ω ≼ 𝐴𝐴 ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 omex 4625 . . . . . 6 ω ∈ V
5 ordom 4639 . . . . . . 7 Ord ω
6 peano2 4627 . . . . . . . 8 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
76ad2antrl 490 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛 ∈ ω)
8 ordelss 4410 . . . . . . 7 ((Ord ω ∧ suc 𝑛 ∈ ω) → suc 𝑛 ⊆ ω)
95, 7, 8sylancr 414 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛 ⊆ ω)
10 ssdomg 6832 . . . . . 6 (ω ∈ V → (suc 𝑛 ⊆ ω → suc 𝑛 ≼ ω))
114, 9, 10mpsyl 65 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛 ≼ ω)
12 domentr 6845 . . . . . 6 ((ω ≼ 𝐴𝐴𝑛) → ω ≼ 𝑛)
1312ad2ant2rl 511 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ω ≼ 𝑛)
14 domtr 6839 . . . . 5 ((suc 𝑛 ≼ ω ∧ ω ≼ 𝑛) → suc 𝑛𝑛)
1511, 13, 14syl2anc 411 . . . 4 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛𝑛)
16 php5dom 6919 . . . . 5 (𝑛 ∈ ω → ¬ suc 𝑛𝑛)
1716ad2antrl 490 . . . 4 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ suc 𝑛𝑛)
1815, 17pm2.21dd 621 . . 3 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ 𝐴 ∈ Fin)
193, 18rexlimddv 2616 . 2 ((ω ≼ 𝐴𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
2019pm2.01da 637 1 (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wcel 2164  wrex 2473  Vcvv 2760  wss 3153   class class class wbr 4029  Ord word 4393  suc csuc 4396  ωcom 4622  cen 6792  cdom 6793  Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797
This theorem is referenced by:  ominf  6952  hashennnuni  10850
  Copyright terms: Public domain W3C validator