Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infnfi | GIF version |
Description: An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.) |
Ref | Expression |
---|---|
infnfi | ⊢ (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6727 | . . . . 5 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
2 | 1 | biimpi 119 | . . . 4 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
3 | 2 | adantl 275 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
4 | omex 4570 | . . . . . 6 ⊢ ω ∈ V | |
5 | ordom 4584 | . . . . . . 7 ⊢ Ord ω | |
6 | peano2 4572 | . . . . . . . 8 ⊢ (𝑛 ∈ ω → suc 𝑛 ∈ ω) | |
7 | 6 | ad2antrl 482 | . . . . . . 7 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → suc 𝑛 ∈ ω) |
8 | ordelss 4357 | . . . . . . 7 ⊢ ((Ord ω ∧ suc 𝑛 ∈ ω) → suc 𝑛 ⊆ ω) | |
9 | 5, 7, 8 | sylancr 411 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → suc 𝑛 ⊆ ω) |
10 | ssdomg 6744 | . . . . . 6 ⊢ (ω ∈ V → (suc 𝑛 ⊆ ω → suc 𝑛 ≼ ω)) | |
11 | 4, 9, 10 | mpsyl 65 | . . . . 5 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → suc 𝑛 ≼ ω) |
12 | domentr 6757 | . . . . . 6 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ≈ 𝑛) → ω ≼ 𝑛) | |
13 | 12 | ad2ant2rl 503 | . . . . 5 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ω ≼ 𝑛) |
14 | domtr 6751 | . . . . 5 ⊢ ((suc 𝑛 ≼ ω ∧ ω ≼ 𝑛) → suc 𝑛 ≼ 𝑛) | |
15 | 11, 13, 14 | syl2anc 409 | . . . 4 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → suc 𝑛 ≼ 𝑛) |
16 | php5dom 6829 | . . . . 5 ⊢ (𝑛 ∈ ω → ¬ suc 𝑛 ≼ 𝑛) | |
17 | 16 | ad2antrl 482 | . . . 4 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ¬ suc 𝑛 ≼ 𝑛) |
18 | 15, 17 | pm2.21dd 610 | . . 3 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ¬ 𝐴 ∈ Fin) |
19 | 3, 18 | rexlimddv 2588 | . 2 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin) |
20 | 19 | pm2.01da 626 | 1 ⊢ (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∈ wcel 2136 ∃wrex 2445 Vcvv 2726 ⊆ wss 3116 class class class wbr 3982 Ord word 4340 suc csuc 4343 ωcom 4567 ≈ cen 6704 ≼ cdom 6705 Fincfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 |
This theorem is referenced by: ominf 6862 hashennnuni 10692 |
Copyright terms: Public domain | W3C validator |