| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infnfi | GIF version | ||
| Description: An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.) |
| Ref | Expression |
|---|---|
| infnfi | ⊢ (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6870 | . . . . 5 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
| 2 | 1 | biimpi 120 | . . . 4 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
| 4 | omex 4654 | . . . . . 6 ⊢ ω ∈ V | |
| 5 | ordom 4668 | . . . . . . 7 ⊢ Ord ω | |
| 6 | peano2 4656 | . . . . . . . 8 ⊢ (𝑛 ∈ ω → suc 𝑛 ∈ ω) | |
| 7 | 6 | ad2antrl 490 | . . . . . . 7 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → suc 𝑛 ∈ ω) |
| 8 | ordelss 4439 | . . . . . . 7 ⊢ ((Ord ω ∧ suc 𝑛 ∈ ω) → suc 𝑛 ⊆ ω) | |
| 9 | 5, 7, 8 | sylancr 414 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → suc 𝑛 ⊆ ω) |
| 10 | ssdomg 6888 | . . . . . 6 ⊢ (ω ∈ V → (suc 𝑛 ⊆ ω → suc 𝑛 ≼ ω)) | |
| 11 | 4, 9, 10 | mpsyl 65 | . . . . 5 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → suc 𝑛 ≼ ω) |
| 12 | domentr 6901 | . . . . . 6 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ≈ 𝑛) → ω ≼ 𝑛) | |
| 13 | 12 | ad2ant2rl 511 | . . . . 5 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ω ≼ 𝑛) |
| 14 | domtr 6895 | . . . . 5 ⊢ ((suc 𝑛 ≼ ω ∧ ω ≼ 𝑛) → suc 𝑛 ≼ 𝑛) | |
| 15 | 11, 13, 14 | syl2anc 411 | . . . 4 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → suc 𝑛 ≼ 𝑛) |
| 16 | php5dom 6980 | . . . . 5 ⊢ (𝑛 ∈ ω → ¬ suc 𝑛 ≼ 𝑛) | |
| 17 | 16 | ad2antrl 490 | . . . 4 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ¬ suc 𝑛 ≼ 𝑛) |
| 18 | 15, 17 | pm2.21dd 621 | . . 3 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ¬ 𝐴 ∈ Fin) |
| 19 | 3, 18 | rexlimddv 2629 | . 2 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin) |
| 20 | 19 | pm2.01da 637 | 1 ⊢ (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2177 ∃wrex 2486 Vcvv 2773 ⊆ wss 3170 class class class wbr 4054 Ord word 4422 suc csuc 4425 ωcom 4651 ≈ cen 6843 ≼ cdom 6844 Fincfn 6845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-er 6638 df-en 6846 df-dom 6847 df-fin 6848 |
| This theorem is referenced by: ominf 7014 hashennnuni 10956 |
| Copyright terms: Public domain | W3C validator |