ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnfi GIF version

Theorem infnfi 6873
Description: An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
infnfi (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)

Proof of Theorem infnfi
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 isfi 6739 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 119 . . . 4 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantl 275 . . 3 ((ω ≼ 𝐴𝐴 ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 omex 4577 . . . . . 6 ω ∈ V
5 ordom 4591 . . . . . . 7 Ord ω
6 peano2 4579 . . . . . . . 8 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
76ad2antrl 487 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛 ∈ ω)
8 ordelss 4364 . . . . . . 7 ((Ord ω ∧ suc 𝑛 ∈ ω) → suc 𝑛 ⊆ ω)
95, 7, 8sylancr 412 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛 ⊆ ω)
10 ssdomg 6756 . . . . . 6 (ω ∈ V → (suc 𝑛 ⊆ ω → suc 𝑛 ≼ ω))
114, 9, 10mpsyl 65 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛 ≼ ω)
12 domentr 6769 . . . . . 6 ((ω ≼ 𝐴𝐴𝑛) → ω ≼ 𝑛)
1312ad2ant2rl 508 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ω ≼ 𝑛)
14 domtr 6763 . . . . 5 ((suc 𝑛 ≼ ω ∧ ω ≼ 𝑛) → suc 𝑛𝑛)
1511, 13, 14syl2anc 409 . . . 4 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → suc 𝑛𝑛)
16 php5dom 6841 . . . . 5 (𝑛 ∈ ω → ¬ suc 𝑛𝑛)
1716ad2antrl 487 . . . 4 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ suc 𝑛𝑛)
1815, 17pm2.21dd 615 . . 3 (((ω ≼ 𝐴𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ¬ 𝐴 ∈ Fin)
193, 18rexlimddv 2592 . 2 ((ω ≼ 𝐴𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
2019pm2.01da 631 1 (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wcel 2141  wrex 2449  Vcvv 2730  wss 3121   class class class wbr 3989  Ord word 4347  suc csuc 4350  ωcom 4574  cen 6716  cdom 6717  Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721
This theorem is referenced by:  ominf  6874  hashennnuni  10713
  Copyright terms: Public domain W3C validator