![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infnfi | GIF version |
Description: An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.) |
Ref | Expression |
---|---|
infnfi | ⊢ (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 6532 | . . . . 5 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) | |
2 | 1 | biimpi 119 | . . . 4 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
3 | 2 | adantl 272 | . . 3 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) → ∃𝑛 ∈ ω 𝐴 ≈ 𝑛) |
4 | omex 4421 | . . . . . 6 ⊢ ω ∈ V | |
5 | ordom 4434 | . . . . . . 7 ⊢ Ord ω | |
6 | peano2 4423 | . . . . . . . 8 ⊢ (𝑛 ∈ ω → suc 𝑛 ∈ ω) | |
7 | 6 | ad2antrl 475 | . . . . . . 7 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → suc 𝑛 ∈ ω) |
8 | ordelss 4215 | . . . . . . 7 ⊢ ((Ord ω ∧ suc 𝑛 ∈ ω) → suc 𝑛 ⊆ ω) | |
9 | 5, 7, 8 | sylancr 406 | . . . . . 6 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → suc 𝑛 ⊆ ω) |
10 | ssdomg 6549 | . . . . . 6 ⊢ (ω ∈ V → (suc 𝑛 ⊆ ω → suc 𝑛 ≼ ω)) | |
11 | 4, 9, 10 | mpsyl 65 | . . . . 5 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → suc 𝑛 ≼ ω) |
12 | domentr 6562 | . . . . . 6 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ≈ 𝑛) → ω ≼ 𝑛) | |
13 | 12 | ad2ant2rl 496 | . . . . 5 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ω ≼ 𝑛) |
14 | domtr 6556 | . . . . 5 ⊢ ((suc 𝑛 ≼ ω ∧ ω ≼ 𝑛) → suc 𝑛 ≼ 𝑛) | |
15 | 11, 13, 14 | syl2anc 404 | . . . 4 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → suc 𝑛 ≼ 𝑛) |
16 | php5dom 6633 | . . . . 5 ⊢ (𝑛 ∈ ω → ¬ suc 𝑛 ≼ 𝑛) | |
17 | 16 | ad2antrl 475 | . . . 4 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ¬ suc 𝑛 ≼ 𝑛) |
18 | 15, 17 | pm2.21dd 586 | . . 3 ⊢ (((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴 ≈ 𝑛)) → ¬ 𝐴 ∈ Fin) |
19 | 3, 18 | rexlimddv 2494 | . 2 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin) |
20 | 19 | pm2.01da 601 | 1 ⊢ (ω ≼ 𝐴 → ¬ 𝐴 ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∈ wcel 1439 ∃wrex 2361 Vcvv 2620 ⊆ wss 3000 class class class wbr 3851 Ord word 4198 suc csuc 4201 ωcom 4418 ≈ cen 6509 ≼ cdom 6510 Fincfn 6511 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-iinf 4416 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-br 3852 df-opab 3906 df-tr 3943 df-id 4129 df-iord 4202 df-on 4204 df-suc 4207 df-iom 4419 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-er 6306 df-en 6512 df-dom 6513 df-fin 6514 |
This theorem is referenced by: ominf 6666 hashennnuni 10248 |
Copyright terms: Public domain | W3C validator |