ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cxplt3 GIF version

Theorem cxplt3 15054
Description: Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
cxplt3 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐶) < (𝐴𝑐𝐵)))

Proof of Theorem cxplt3
StepHypRef Expression
1 simpll 527 . . . 4 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐴 ∈ ℝ+)
2 simprl 529 . . . . 5 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐵 ∈ ℝ)
32recnd 8048 . . . 4 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐵 ∈ ℂ)
4 cxprec 15045 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ) → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴𝑐𝐵)))
51, 3, 4syl2anc 411 . . 3 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((1 / 𝐴)↑𝑐𝐵) = (1 / (𝐴𝑐𝐵)))
6 simprr 531 . . . . 5 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐶 ∈ ℝ)
76recnd 8048 . . . 4 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐶 ∈ ℂ)
8 cxprec 15045 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℂ) → ((1 / 𝐴)↑𝑐𝐶) = (1 / (𝐴𝑐𝐶)))
91, 7, 8syl2anc 411 . . 3 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((1 / 𝐴)↑𝑐𝐶) = (1 / (𝐴𝑐𝐶)))
105, 9breq12d 4042 . 2 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (((1 / 𝐴)↑𝑐𝐵) < ((1 / 𝐴)↑𝑐𝐶) ↔ (1 / (𝐴𝑐𝐵)) < (1 / (𝐴𝑐𝐶))))
111rprecred 9774 . . 3 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (1 / 𝐴) ∈ ℝ)
12 simplr 528 . . . 4 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 𝐴 < 1)
131reclt1d 9776 . . . 4 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
1412, 13mpbid 147 . . 3 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → 1 < (1 / 𝐴))
15 cxplt 15050 . . 3 ((((1 / 𝐴) ∈ ℝ ∧ 1 < (1 / 𝐴)) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ ((1 / 𝐴)↑𝑐𝐵) < ((1 / 𝐴)↑𝑐𝐶)))
1611, 14, 2, 6, 15syl22anc 1250 . 2 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ ((1 / 𝐴)↑𝑐𝐵) < ((1 / 𝐴)↑𝑐𝐶)))
17 rpcxpcl 15038 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴𝑐𝐶) ∈ ℝ+)
1817ad2ant2rl 511 . . 3 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴𝑐𝐶) ∈ ℝ+)
19 rpcxpcl 15038 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ) → (𝐴𝑐𝐵) ∈ ℝ+)
2019ad2ant2r 509 . . 3 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴𝑐𝐵) ∈ ℝ+)
2118, 20ltrecd 9781 . 2 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((𝐴𝑐𝐶) < (𝐴𝑐𝐵) ↔ (1 / (𝐴𝑐𝐵)) < (1 / (𝐴𝑐𝐶))))
2210, 16, 213bitr4d 220 1 (((𝐴 ∈ ℝ+𝐴 < 1) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵 < 𝐶 ↔ (𝐴𝑐𝐶) < (𝐴𝑐𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164   class class class wbr 4029  (class class class)co 5918  cc 7870  cr 7871  1c1 7873   < clt 8054   / cdiv 8691  +crp 9719  𝑐ccxp 14992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-pre-suploc 7993  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-map 6704  df-pm 6705  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-ioo 9958  df-ico 9960  df-icc 9961  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-bc 10819  df-ihash 10847  df-shft 10959  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791  df-e 11792  df-rest 12852  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-ntr 14264  df-cn 14356  df-cnp 14357  df-tx 14421  df-cncf 14726  df-limced 14810  df-dvap 14811  df-relog 14993  df-rpcxp 14994
This theorem is referenced by:  cxple3  15055  cxplt3d  15068
  Copyright terms: Public domain W3C validator