ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcani GIF version

Theorem addcani 8267
Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 27-Oct-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypotheses
Ref Expression
addcani.1 𝐴 ∈ ℂ
addcani.2 𝐵 ∈ ℂ
addcani.3 𝐶 ∈ ℂ
Assertion
Ref Expression
addcani ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)

Proof of Theorem addcani
StepHypRef Expression
1 addcani.1 . 2 𝐴 ∈ ℂ
2 addcani.2 . 2 𝐵 ∈ ℂ
3 addcani.3 . 2 𝐶 ∈ ℂ
4 addcan 8265 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
51, 2, 3, 4mp3an 1350 1 ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wcel 2177  (class class class)co 5954  cc 7936   + caddc 7941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-resscn 8030  ax-1cn 8031  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-distr 8042  ax-i2m1 8043  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-iota 5238  df-fv 5285  df-ov 5957
This theorem is referenced by:  negdii  8369  fsumrelem  11832  karatsuba  12803
  Copyright terms: Public domain W3C validator