| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcani | GIF version | ||
| Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 27-Oct-1999.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| addcani.1 | ⊢ 𝐴 ∈ ℂ |
| addcani.2 | ⊢ 𝐵 ∈ ℂ |
| addcani.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| addcani | ⊢ ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcani.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addcani.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | addcani.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | addcan 8265 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) | |
| 5 | 1, 2, 3, 4 | mp3an 1350 | 1 ⊢ ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2177 (class class class)co 5954 ℂcc 7936 + caddc 7941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8030 ax-1cn 8031 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-distr 8042 ax-i2m1 8043 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-iota 5238 df-fv 5285 df-ov 5957 |
| This theorem is referenced by: negdii 8369 fsumrelem 11832 karatsuba 12803 |
| Copyright terms: Public domain | W3C validator |