Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > divalglemqt | GIF version |
Description: Lemma for divalg 11883. The 𝑄 = 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.) |
Ref | Expression |
---|---|
divalglemqt.d | ⊢ (𝜑 → 𝐷 ∈ ℤ) |
divalglemqt.r | ⊢ (𝜑 → 𝑅 ∈ ℤ) |
divalglemqt.s | ⊢ (𝜑 → 𝑆 ∈ ℤ) |
divalglemqt.q | ⊢ (𝜑 → 𝑄 ∈ ℤ) |
divalglemqt.t | ⊢ (𝜑 → 𝑇 ∈ ℤ) |
divalglemqt.qt | ⊢ (𝜑 → 𝑄 = 𝑇) |
divalglemqt.eq | ⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) |
Ref | Expression |
---|---|
divalglemqt | ⊢ (𝜑 → 𝑅 = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divalglemqt.qt | . . . 4 ⊢ (𝜑 → 𝑄 = 𝑇) | |
2 | 1 | oveq1d 5868 | . . 3 ⊢ (𝜑 → (𝑄 · 𝐷) = (𝑇 · 𝐷)) |
3 | divalglemqt.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ ℤ) | |
4 | divalglemqt.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℤ) | |
5 | 3, 4 | zmulcld 9340 | . . . 4 ⊢ (𝜑 → (𝑄 · 𝐷) ∈ ℤ) |
6 | 5 | zcnd 9335 | . . 3 ⊢ (𝜑 → (𝑄 · 𝐷) ∈ ℂ) |
7 | 2, 6 | eqeltrrd 2248 | . 2 ⊢ (𝜑 → (𝑇 · 𝐷) ∈ ℂ) |
8 | divalglemqt.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℤ) | |
9 | 8 | zcnd 9335 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℂ) |
10 | divalglemqt.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℤ) | |
11 | 10 | zcnd 9335 | . 2 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
12 | 2 | oveq1d 5868 | . . 3 ⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑅)) |
13 | divalglemqt.eq | . . 3 ⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) | |
14 | 12, 13 | eqtr3d 2205 | . 2 ⊢ (𝜑 → ((𝑇 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) |
15 | 7, 9, 11, 14 | addcanad 8105 | 1 ⊢ (𝜑 → 𝑅 = 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 + caddc 7777 · cmul 7779 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: divalglemeunn 11880 divalglemeuneg 11882 |
Copyright terms: Public domain | W3C validator |