![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > divalglemqt | GIF version |
Description: Lemma for divalg 12068. The 𝑄 = 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.) |
Ref | Expression |
---|---|
divalglemqt.d | ⊢ (𝜑 → 𝐷 ∈ ℤ) |
divalglemqt.r | ⊢ (𝜑 → 𝑅 ∈ ℤ) |
divalglemqt.s | ⊢ (𝜑 → 𝑆 ∈ ℤ) |
divalglemqt.q | ⊢ (𝜑 → 𝑄 ∈ ℤ) |
divalglemqt.t | ⊢ (𝜑 → 𝑇 ∈ ℤ) |
divalglemqt.qt | ⊢ (𝜑 → 𝑄 = 𝑇) |
divalglemqt.eq | ⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) |
Ref | Expression |
---|---|
divalglemqt | ⊢ (𝜑 → 𝑅 = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divalglemqt.qt | . . . 4 ⊢ (𝜑 → 𝑄 = 𝑇) | |
2 | 1 | oveq1d 5934 | . . 3 ⊢ (𝜑 → (𝑄 · 𝐷) = (𝑇 · 𝐷)) |
3 | divalglemqt.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ ℤ) | |
4 | divalglemqt.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℤ) | |
5 | 3, 4 | zmulcld 9448 | . . . 4 ⊢ (𝜑 → (𝑄 · 𝐷) ∈ ℤ) |
6 | 5 | zcnd 9443 | . . 3 ⊢ (𝜑 → (𝑄 · 𝐷) ∈ ℂ) |
7 | 2, 6 | eqeltrrd 2271 | . 2 ⊢ (𝜑 → (𝑇 · 𝐷) ∈ ℂ) |
8 | divalglemqt.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℤ) | |
9 | 8 | zcnd 9443 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℂ) |
10 | divalglemqt.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℤ) | |
11 | 10 | zcnd 9443 | . 2 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
12 | 2 | oveq1d 5934 | . . 3 ⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑅)) |
13 | divalglemqt.eq | . . 3 ⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) | |
14 | 12, 13 | eqtr3d 2228 | . 2 ⊢ (𝜑 → ((𝑇 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) |
15 | 7, 9, 11, 14 | addcanad 8207 | 1 ⊢ (𝜑 → 𝑅 = 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 + caddc 7877 · cmul 7879 ℤcz 9320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 |
This theorem is referenced by: divalglemeunn 12065 divalglemeuneg 12067 |
Copyright terms: Public domain | W3C validator |