| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divalglemqt | GIF version | ||
| Description: Lemma for divalg 12435. The 𝑄 = 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.) |
| Ref | Expression |
|---|---|
| divalglemqt.d | ⊢ (𝜑 → 𝐷 ∈ ℤ) |
| divalglemqt.r | ⊢ (𝜑 → 𝑅 ∈ ℤ) |
| divalglemqt.s | ⊢ (𝜑 → 𝑆 ∈ ℤ) |
| divalglemqt.q | ⊢ (𝜑 → 𝑄 ∈ ℤ) |
| divalglemqt.t | ⊢ (𝜑 → 𝑇 ∈ ℤ) |
| divalglemqt.qt | ⊢ (𝜑 → 𝑄 = 𝑇) |
| divalglemqt.eq | ⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) |
| Ref | Expression |
|---|---|
| divalglemqt | ⊢ (𝜑 → 𝑅 = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglemqt.qt | . . . 4 ⊢ (𝜑 → 𝑄 = 𝑇) | |
| 2 | 1 | oveq1d 6016 | . . 3 ⊢ (𝜑 → (𝑄 · 𝐷) = (𝑇 · 𝐷)) |
| 3 | divalglemqt.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ ℤ) | |
| 4 | divalglemqt.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℤ) | |
| 5 | 3, 4 | zmulcld 9575 | . . . 4 ⊢ (𝜑 → (𝑄 · 𝐷) ∈ ℤ) |
| 6 | 5 | zcnd 9570 | . . 3 ⊢ (𝜑 → (𝑄 · 𝐷) ∈ ℂ) |
| 7 | 2, 6 | eqeltrrd 2307 | . 2 ⊢ (𝜑 → (𝑇 · 𝐷) ∈ ℂ) |
| 8 | divalglemqt.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℤ) | |
| 9 | 8 | zcnd 9570 | . 2 ⊢ (𝜑 → 𝑅 ∈ ℂ) |
| 10 | divalglemqt.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℤ) | |
| 11 | 10 | zcnd 9570 | . 2 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
| 12 | 2 | oveq1d 6016 | . . 3 ⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑅)) |
| 13 | divalglemqt.eq | . . 3 ⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) | |
| 14 | 12, 13 | eqtr3d 2264 | . 2 ⊢ (𝜑 → ((𝑇 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) |
| 15 | 7, 9, 11, 14 | addcanad 8332 | 1 ⊢ (𝜑 → 𝑅 = 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6001 ℂcc 7997 + caddc 8002 · cmul 8004 ℤcz 9446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 |
| This theorem is referenced by: divalglemeunn 12432 divalglemeuneg 12434 |
| Copyright terms: Public domain | W3C validator |