Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > issubmd | GIF version |
Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
issubmd.b | ⊢ 𝐵 = (Base‘𝑀) |
issubmd.p | ⊢ + = (+g‘𝑀) |
issubmd.z | ⊢ 0 = (0g‘𝑀) |
issubmd.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
issubmd.cz | ⊢ (𝜑 → 𝜒) |
issubmd.cp | ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) → 𝜂) |
issubmd.ch | ⊢ (𝑧 = 0 → (𝜓 ↔ 𝜒)) |
issubmd.th | ⊢ (𝑧 = 𝑥 → (𝜓 ↔ 𝜃)) |
issubmd.ta | ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜏)) |
issubmd.et | ⊢ (𝑧 = (𝑥 + 𝑦) → (𝜓 ↔ 𝜂)) |
Ref | Expression |
---|---|
issubmd | ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3232 | . . 3 ⊢ {𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵) |
3 | issubmd.ch | . . 3 ⊢ (𝑧 = 0 → (𝜓 ↔ 𝜒)) | |
4 | issubmd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
5 | issubmd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
6 | issubmd.z | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
7 | 5, 6 | mndidcl 12666 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
8 | 4, 7 | syl 14 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
9 | issubmd.cz | . . 3 ⊢ (𝜑 → 𝜒) | |
10 | 3, 8, 9 | elrabd 2888 | . 2 ⊢ (𝜑 → 0 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
11 | issubmd.th | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝜓 ↔ 𝜃)) | |
12 | 11 | elrab 2886 | . . . . 5 ⊢ (𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ↔ (𝑥 ∈ 𝐵 ∧ 𝜃)) |
13 | issubmd.ta | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜏)) | |
14 | 13 | elrab 2886 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ↔ (𝑦 ∈ 𝐵 ∧ 𝜏)) |
15 | 12, 14 | anbi12i 457 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ∧ 𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) |
16 | issubmd.et | . . . . 5 ⊢ (𝑧 = (𝑥 + 𝑦) → (𝜓 ↔ 𝜂)) | |
17 | 4 | adantr 274 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝑀 ∈ Mnd) |
18 | simprll 532 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝑥 ∈ 𝐵) | |
19 | simprrl 534 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝑦 ∈ 𝐵) | |
20 | issubmd.p | . . . . . . 7 ⊢ + = (+g‘𝑀) | |
21 | 5, 20 | mndcl 12659 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
22 | 17, 18, 19, 21 | syl3anc 1233 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → (𝑥 + 𝑦) ∈ 𝐵) |
23 | an4 581 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) | |
24 | issubmd.cp | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) → 𝜂) | |
25 | 23, 24 | sylan2b 285 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝜂) |
26 | 16, 22, 25 | elrabd 2888 | . . . 4 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
27 | 15, 26 | sylan2b 285 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ∧ 𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓})) → (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
28 | 27 | ralrimivva 2552 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}∀𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
29 | 5, 6, 20 | issubm 12695 | . . 3 ⊢ (𝑀 ∈ Mnd → ({𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀) ↔ ({𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵 ∧ 0 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ∧ ∀𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}∀𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}))) |
30 | 4, 29 | syl 14 | . 2 ⊢ (𝜑 → ({𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀) ↔ ({𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵 ∧ 0 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ∧ ∀𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}∀𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}))) |
31 | 2, 10, 28, 30 | mpbir3and 1175 | 1 ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ∀wral 2448 {crab 2452 ⊆ wss 3121 ‘cfv 5198 (class class class)co 5853 Basecbs 12416 +gcplusg 12480 0gc0g 12596 Mndcmnd 12652 SubMndcsubmnd 12682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-riota 5809 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-0g 12598 df-mgm 12610 df-sgrp 12643 df-mnd 12653 df-submnd 12684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |