![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > issubmd | GIF version |
Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
issubmd.b | ⊢ 𝐵 = (Base‘𝑀) |
issubmd.p | ⊢ + = (+g‘𝑀) |
issubmd.z | ⊢ 0 = (0g‘𝑀) |
issubmd.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
issubmd.cz | ⊢ (𝜑 → 𝜒) |
issubmd.cp | ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) → 𝜂) |
issubmd.ch | ⊢ (𝑧 = 0 → (𝜓 ↔ 𝜒)) |
issubmd.th | ⊢ (𝑧 = 𝑥 → (𝜓 ↔ 𝜃)) |
issubmd.ta | ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜏)) |
issubmd.et | ⊢ (𝑧 = (𝑥 + 𝑦) → (𝜓 ↔ 𝜂)) |
Ref | Expression |
---|---|
issubmd | ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3264 | . . 3 ⊢ {𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵) |
3 | issubmd.ch | . . 3 ⊢ (𝑧 = 0 → (𝜓 ↔ 𝜒)) | |
4 | issubmd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
5 | issubmd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
6 | issubmd.z | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
7 | 5, 6 | mndidcl 13011 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
8 | 4, 7 | syl 14 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
9 | issubmd.cz | . . 3 ⊢ (𝜑 → 𝜒) | |
10 | 3, 8, 9 | elrabd 2918 | . 2 ⊢ (𝜑 → 0 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
11 | issubmd.th | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝜓 ↔ 𝜃)) | |
12 | 11 | elrab 2916 | . . . . 5 ⊢ (𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ↔ (𝑥 ∈ 𝐵 ∧ 𝜃)) |
13 | issubmd.ta | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜏)) | |
14 | 13 | elrab 2916 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ↔ (𝑦 ∈ 𝐵 ∧ 𝜏)) |
15 | 12, 14 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ∧ 𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) |
16 | issubmd.et | . . . . 5 ⊢ (𝑧 = (𝑥 + 𝑦) → (𝜓 ↔ 𝜂)) | |
17 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝑀 ∈ Mnd) |
18 | simprll 537 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝑥 ∈ 𝐵) | |
19 | simprrl 539 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝑦 ∈ 𝐵) | |
20 | issubmd.p | . . . . . . 7 ⊢ + = (+g‘𝑀) | |
21 | 5, 20 | mndcl 13004 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
22 | 17, 18, 19, 21 | syl3anc 1249 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → (𝑥 + 𝑦) ∈ 𝐵) |
23 | an4 586 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) | |
24 | issubmd.cp | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) → 𝜂) | |
25 | 23, 24 | sylan2b 287 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝜂) |
26 | 16, 22, 25 | elrabd 2918 | . . . 4 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
27 | 15, 26 | sylan2b 287 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ∧ 𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓})) → (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
28 | 27 | ralrimivva 2576 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}∀𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
29 | 5, 6, 20 | issubm 13044 | . . 3 ⊢ (𝑀 ∈ Mnd → ({𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀) ↔ ({𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵 ∧ 0 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ∧ ∀𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}∀𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}))) |
30 | 4, 29 | syl 14 | . 2 ⊢ (𝜑 → ({𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀) ↔ ({𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵 ∧ 0 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ∧ ∀𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}∀𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}))) |
31 | 2, 10, 28, 30 | mpbir3and 1182 | 1 ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∀wral 2472 {crab 2476 ⊆ wss 3153 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 0gc0g 12867 Mndcmnd 12997 SubMndcsubmnd 13030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-submnd 13032 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |