| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubmd | GIF version | ||
| Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| issubmd.b | ⊢ 𝐵 = (Base‘𝑀) |
| issubmd.p | ⊢ + = (+g‘𝑀) |
| issubmd.z | ⊢ 0 = (0g‘𝑀) |
| issubmd.m | ⊢ (𝜑 → 𝑀 ∈ Mnd) |
| issubmd.cz | ⊢ (𝜑 → 𝜒) |
| issubmd.cp | ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) → 𝜂) |
| issubmd.ch | ⊢ (𝑧 = 0 → (𝜓 ↔ 𝜒)) |
| issubmd.th | ⊢ (𝑧 = 𝑥 → (𝜓 ↔ 𝜃)) |
| issubmd.ta | ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜏)) |
| issubmd.et | ⊢ (𝑧 = (𝑥 + 𝑦) → (𝜓 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| issubmd | ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3269 | . . 3 ⊢ {𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵) |
| 3 | issubmd.ch | . . 3 ⊢ (𝑧 = 0 → (𝜓 ↔ 𝜒)) | |
| 4 | issubmd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Mnd) | |
| 5 | issubmd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 6 | issubmd.z | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
| 7 | 5, 6 | mndidcl 13132 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
| 8 | 4, 7 | syl 14 | . . 3 ⊢ (𝜑 → 0 ∈ 𝐵) |
| 9 | issubmd.cz | . . 3 ⊢ (𝜑 → 𝜒) | |
| 10 | 3, 8, 9 | elrabd 2922 | . 2 ⊢ (𝜑 → 0 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
| 11 | issubmd.th | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝜓 ↔ 𝜃)) | |
| 12 | 11 | elrab 2920 | . . . . 5 ⊢ (𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ↔ (𝑥 ∈ 𝐵 ∧ 𝜃)) |
| 13 | issubmd.ta | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝜓 ↔ 𝜏)) | |
| 14 | 13 | elrab 2920 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ↔ (𝑦 ∈ 𝐵 ∧ 𝜏)) |
| 15 | 12, 14 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ∧ 𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) ↔ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) |
| 16 | issubmd.et | . . . . 5 ⊢ (𝑧 = (𝑥 + 𝑦) → (𝜓 ↔ 𝜂)) | |
| 17 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝑀 ∈ Mnd) |
| 18 | simprll 537 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝑥 ∈ 𝐵) | |
| 19 | simprrl 539 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝑦 ∈ 𝐵) | |
| 20 | issubmd.p | . . . . . . 7 ⊢ + = (+g‘𝑀) | |
| 21 | 5, 20 | mndcl 13125 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| 22 | 17, 18, 19, 21 | syl3anc 1249 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → (𝑥 + 𝑦) ∈ 𝐵) |
| 23 | an4 586 | . . . . . 6 ⊢ (((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) | |
| 24 | issubmd.cp | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝜃 ∧ 𝜏))) → 𝜂) | |
| 25 | 23, 24 | sylan2b 287 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → 𝜂) |
| 26 | 16, 22, 25 | elrabd 2922 | . . . 4 ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝜃) ∧ (𝑦 ∈ 𝐵 ∧ 𝜏))) → (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
| 27 | 15, 26 | sylan2b 287 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ∧ 𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓})) → (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
| 28 | 27 | ralrimivva 2579 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}∀𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}) |
| 29 | 5, 6, 20 | issubm 13174 | . . 3 ⊢ (𝑀 ∈ Mnd → ({𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀) ↔ ({𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵 ∧ 0 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ∧ ∀𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}∀𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}))) |
| 30 | 4, 29 | syl 14 | . 2 ⊢ (𝜑 → ({𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀) ↔ ({𝑧 ∈ 𝐵 ∣ 𝜓} ⊆ 𝐵 ∧ 0 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} ∧ ∀𝑥 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}∀𝑦 ∈ {𝑧 ∈ 𝐵 ∣ 𝜓} (𝑥 + 𝑦) ∈ {𝑧 ∈ 𝐵 ∣ 𝜓}))) |
| 31 | 2, 10, 28, 30 | mpbir3and 1182 | 1 ⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ 𝜓} ∈ (SubMnd‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {crab 2479 ⊆ wss 3157 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 +gcplusg 12780 0gc0g 12958 Mndcmnd 13118 SubMndcsubmnd 13160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-submnd 13162 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |