ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubmd GIF version

Theorem issubmd 13049
Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
issubmd.b 𝐵 = (Base‘𝑀)
issubmd.p + = (+g𝑀)
issubmd.z 0 = (0g𝑀)
issubmd.m (𝜑𝑀 ∈ Mnd)
issubmd.cz (𝜑𝜒)
issubmd.cp ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏))) → 𝜂)
issubmd.ch (𝑧 = 0 → (𝜓𝜒))
issubmd.th (𝑧 = 𝑥 → (𝜓𝜃))
issubmd.ta (𝑧 = 𝑦 → (𝜓𝜏))
issubmd.et (𝑧 = (𝑥 + 𝑦) → (𝜓𝜂))
Assertion
Ref Expression
issubmd (𝜑 → {𝑧𝐵𝜓} ∈ (SubMnd‘𝑀))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝜓,𝑥,𝑦   𝑧, +   𝑧, 0   𝜒,𝑧   𝜂,𝑧   𝜏,𝑧   𝜃,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑧)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝜏(𝑥,𝑦)   𝜂(𝑥,𝑦)   + (𝑥,𝑦)   𝑀(𝑧)   0 (𝑥,𝑦)

Proof of Theorem issubmd
StepHypRef Expression
1 ssrab2 3265 . . 3 {𝑧𝐵𝜓} ⊆ 𝐵
21a1i 9 . 2 (𝜑 → {𝑧𝐵𝜓} ⊆ 𝐵)
3 issubmd.ch . . 3 (𝑧 = 0 → (𝜓𝜒))
4 issubmd.m . . . 4 (𝜑𝑀 ∈ Mnd)
5 issubmd.b . . . . 5 𝐵 = (Base‘𝑀)
6 issubmd.z . . . . 5 0 = (0g𝑀)
75, 6mndidcl 13014 . . . 4 (𝑀 ∈ Mnd → 0𝐵)
84, 7syl 14 . . 3 (𝜑0𝐵)
9 issubmd.cz . . 3 (𝜑𝜒)
103, 8, 9elrabd 2919 . 2 (𝜑0 ∈ {𝑧𝐵𝜓})
11 issubmd.th . . . . . 6 (𝑧 = 𝑥 → (𝜓𝜃))
1211elrab 2917 . . . . 5 (𝑥 ∈ {𝑧𝐵𝜓} ↔ (𝑥𝐵𝜃))
13 issubmd.ta . . . . . 6 (𝑧 = 𝑦 → (𝜓𝜏))
1413elrab 2917 . . . . 5 (𝑦 ∈ {𝑧𝐵𝜓} ↔ (𝑦𝐵𝜏))
1512, 14anbi12i 460 . . . 4 ((𝑥 ∈ {𝑧𝐵𝜓} ∧ 𝑦 ∈ {𝑧𝐵𝜓}) ↔ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏)))
16 issubmd.et . . . . 5 (𝑧 = (𝑥 + 𝑦) → (𝜓𝜂))
174adantr 276 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑀 ∈ Mnd)
18 simprll 537 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑥𝐵)
19 simprrl 539 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑦𝐵)
20 issubmd.p . . . . . . 7 + = (+g𝑀)
215, 20mndcl 13007 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
2217, 18, 19, 21syl3anc 1249 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → (𝑥 + 𝑦) ∈ 𝐵)
23 an4 586 . . . . . 6 (((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏)))
24 issubmd.cp . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏))) → 𝜂)
2523, 24sylan2b 287 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝜂)
2616, 22, 25elrabd 2919 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
2715, 26sylan2b 287 . . 3 ((𝜑 ∧ (𝑥 ∈ {𝑧𝐵𝜓} ∧ 𝑦 ∈ {𝑧𝐵𝜓})) → (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
2827ralrimivva 2576 . 2 (𝜑 → ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
295, 6, 20issubm 13047 . . 3 (𝑀 ∈ Mnd → ({𝑧𝐵𝜓} ∈ (SubMnd‘𝑀) ↔ ({𝑧𝐵𝜓} ⊆ 𝐵0 ∈ {𝑧𝐵𝜓} ∧ ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})))
304, 29syl 14 . 2 (𝜑 → ({𝑧𝐵𝜓} ∈ (SubMnd‘𝑀) ↔ ({𝑧𝐵𝜓} ⊆ 𝐵0 ∈ {𝑧𝐵𝜓} ∧ ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})))
312, 10, 28, 30mpbir3and 1182 1 (𝜑 → {𝑧𝐵𝜓} ∈ (SubMnd‘𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  {crab 2476  wss 3154  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  0gc0g 12870  Mndcmnd 13000  SubMndcsubmnd 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-submnd 13035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator