ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrtr GIF version

Theorem dvdsrtr 13863
Description: Divisibility is transitive. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
dvdsr.1 𝐵 = (Base‘𝑅)
dvdsr.2 = (∥r𝑅)
Assertion
Ref Expression
dvdsrtr ((𝑅 ∈ Ring ∧ 𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋)

Proof of Theorem dvdsrtr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvdsr.1 . . . . . . 7 𝐵 = (Base‘𝑅)
21a1i 9 . . . . . 6 (𝑅 ∈ Ring → 𝐵 = (Base‘𝑅))
3 dvdsr.2 . . . . . . 7 = (∥r𝑅)
43a1i 9 . . . . . 6 (𝑅 ∈ Ring → = (∥r𝑅))
5 ringsrg 13809 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
6 eqidd 2206 . . . . . 6 (𝑅 ∈ Ring → (.r𝑅) = (.r𝑅))
72, 4, 5, 6dvdsrd 13856 . . . . 5 (𝑅 ∈ Ring → (𝑌 𝑍 ↔ (𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍)))
82, 4, 5, 6dvdsrd 13856 . . . . 5 (𝑅 ∈ Ring → (𝑍 𝑋 ↔ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)))
97, 8anbi12d 473 . . . 4 (𝑅 ∈ Ring → ((𝑌 𝑍𝑍 𝑋) ↔ ((𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍) ∧ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋))))
10 an4 586 . . . 4 (((𝑌𝐵 ∧ ∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍) ∧ (𝑍𝐵 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)) ↔ ((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)))
119, 10bitrdi 196 . . 3 (𝑅 ∈ Ring → ((𝑌 𝑍𝑍 𝑋) ↔ ((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋))))
12 reeanv 2676 . . . . 5 (∃𝑦𝐵𝑥𝐵 ((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) ↔ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋))
131a1i 9 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝐵 = (Base‘𝑅))
143a1i 9 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → = (∥r𝑅))
155ad2antrr 488 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑅 ∈ SRing)
16 eqidd 2206 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → (.r𝑅) = (.r𝑅))
17 simplrl 535 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌𝐵)
18 simpll 527 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑅 ∈ Ring)
19 simprr 531 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑥𝐵)
20 simprl 529 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑦𝐵)
21 eqid 2205 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
221, 21ringcl 13775 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
2318, 19, 20, 22syl3anc 1250 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
2413, 14, 15, 16, 17, 23dvdsrmuld 13858 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌 ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌))
251, 21ringass 13778 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑌𝐵)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
2618, 19, 20, 17, 25syl13anc 1252 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → ((𝑥(.r𝑅)𝑦)(.r𝑅)𝑌) = (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
2724, 26breqtrd 4070 . . . . . . 7 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → 𝑌 (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)))
28 oveq2 5952 . . . . . . . . 9 ((𝑦(.r𝑅)𝑌) = 𝑍 → (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) = (𝑥(.r𝑅)𝑍))
29 id 19 . . . . . . . . 9 ((𝑥(.r𝑅)𝑍) = 𝑋 → (𝑥(.r𝑅)𝑍) = 𝑋)
3028, 29sylan9eq 2258 . . . . . . . 8 (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) = 𝑋)
3130breq2d 4056 . . . . . . 7 (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → (𝑌 (𝑥(.r𝑅)(𝑦(.r𝑅)𝑌)) ↔ 𝑌 𝑋))
3227, 31syl5ibcom 155 . . . . . 6 (((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) ∧ (𝑦𝐵𝑥𝐵)) → (((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
3332rexlimdvva 2631 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) → (∃𝑦𝐵𝑥𝐵 ((𝑦(.r𝑅)𝑌) = 𝑍 ∧ (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
3412, 33biimtrrid 153 . . . 4 ((𝑅 ∈ Ring ∧ (𝑌𝐵𝑍𝐵)) → ((∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋) → 𝑌 𝑋))
3534expimpd 363 . . 3 (𝑅 ∈ Ring → (((𝑌𝐵𝑍𝐵) ∧ (∃𝑦𝐵 (𝑦(.r𝑅)𝑌) = 𝑍 ∧ ∃𝑥𝐵 (𝑥(.r𝑅)𝑍) = 𝑋)) → 𝑌 𝑋))
3611, 35sylbid 150 . 2 (𝑅 ∈ Ring → ((𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋))
37363impib 1204 1 ((𝑅 ∈ Ring ∧ 𝑌 𝑍𝑍 𝑋) → 𝑌 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2176  wrex 2485   class class class wbr 4044  cfv 5271  (class class class)co 5944  Basecbs 12832  .rcmulr 12910  SRingcsrg 13725  Ringcrg 13758  rcdsr 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-cmn 13622  df-abl 13623  df-mgp 13683  df-ur 13722  df-srg 13726  df-ring 13760  df-dvdsr 13851
This theorem is referenced by:  dvdsunit  13874  unitmulcl  13875  unitnegcl  13892
  Copyright terms: Public domain W3C validator