Step | Hyp | Ref
| Expression |
1 | | dvdsr.1 |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
2 | 1 | a1i 9 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘𝑅)) |
3 | | dvdsr.2 |
. . . . . . 7
⊢ ∥ =
(∥r‘𝑅) |
4 | 3 | a1i 9 |
. . . . . 6
⊢ (𝑅 ∈ Ring → ∥ =
(∥r‘𝑅)) |
5 | | ringsrg 13224 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
6 | | eqidd 2178 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(.r‘𝑅) =
(.r‘𝑅)) |
7 | 2, 4, 5, 6 | dvdsrd 13263 |
. . . . 5
⊢ (𝑅 ∈ Ring → (𝑌 ∥ 𝑍 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍))) |
8 | 2, 4, 5, 6 | dvdsrd 13263 |
. . . . 5
⊢ (𝑅 ∈ Ring → (𝑍 ∥ 𝑋 ↔ (𝑍 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋))) |
9 | 7, 8 | anbi12d 473 |
. . . 4
⊢ (𝑅 ∈ Ring → ((𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) ↔ ((𝑌 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍) ∧ (𝑍 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋)))) |
10 | | an4 586 |
. . . 4
⊢ (((𝑌 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍) ∧ (𝑍 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋)) ↔ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋))) |
11 | 9, 10 | bitrdi 196 |
. . 3
⊢ (𝑅 ∈ Ring → ((𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) ↔ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋)))) |
12 | | reeanv 2647 |
. . . . 5
⊢
(∃𝑦 ∈
𝐵 ∃𝑥 ∈ 𝐵 ((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) ↔ (∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋)) |
13 | 1 | a1i 9 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝐵 = (Base‘𝑅)) |
14 | 3 | a1i 9 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → ∥ =
(∥r‘𝑅)) |
15 | 5 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑅 ∈ SRing) |
16 | | eqidd 2178 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (.r‘𝑅) = (.r‘𝑅)) |
17 | | simplrl 535 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
18 | | simpll 527 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑅 ∈ Ring) |
19 | | simprr 531 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
20 | | simprl 529 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
21 | | eqid 2177 |
. . . . . . . . . . 11
⊢
(.r‘𝑅) = (.r‘𝑅) |
22 | 1, 21 | ringcl 13196 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐵) |
23 | 18, 19, 20, 22 | syl3anc 1238 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐵) |
24 | 13, 14, 15, 16, 17, 23 | dvdsrmuld 13265 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑌 ∥ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑌)) |
25 | 1, 21 | ringass 13199 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑌) = (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌))) |
26 | 18, 19, 20, 17, 25 | syl13anc 1240 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑌) = (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌))) |
27 | 24, 26 | breqtrd 4030 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑌 ∥ (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌))) |
28 | | oveq2 5883 |
. . . . . . . . 9
⊢ ((𝑦(.r‘𝑅)𝑌) = 𝑍 → (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌)) = (𝑥(.r‘𝑅)𝑍)) |
29 | | id 19 |
. . . . . . . . 9
⊢ ((𝑥(.r‘𝑅)𝑍) = 𝑋 → (𝑥(.r‘𝑅)𝑍) = 𝑋) |
30 | 28, 29 | sylan9eq 2230 |
. . . . . . . 8
⊢ (((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) → (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌)) = 𝑋) |
31 | 30 | breq2d 4016 |
. . . . . . 7
⊢ (((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) → (𝑌 ∥ (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌)) ↔ 𝑌 ∥ 𝑋)) |
32 | 27, 31 | syl5ibcom 155 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) → 𝑌 ∥ 𝑋)) |
33 | 32 | rexlimdvva 2602 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) → 𝑌 ∥ 𝑋)) |
34 | 12, 33 | biimtrrid 153 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋) → 𝑌 ∥ 𝑋)) |
35 | 34 | expimpd 363 |
. . 3
⊢ (𝑅 ∈ Ring → (((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋)) → 𝑌 ∥ 𝑋)) |
36 | 11, 35 | sylbid 150 |
. 2
⊢ (𝑅 ∈ Ring → ((𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) → 𝑌 ∥ 𝑋)) |
37 | 36 | 3impib 1201 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) → 𝑌 ∥ 𝑋) |