| Step | Hyp | Ref
| Expression |
| 1 | | dvdsr.1 |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
| 2 | 1 | a1i 9 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘𝑅)) |
| 3 | | dvdsr.2 |
. . . . . . 7
⊢ ∥ =
(∥r‘𝑅) |
| 4 | 3 | a1i 9 |
. . . . . 6
⊢ (𝑅 ∈ Ring → ∥ =
(∥r‘𝑅)) |
| 5 | | ringsrg 13603 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
| 6 | | eqidd 2197 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(.r‘𝑅) =
(.r‘𝑅)) |
| 7 | 2, 4, 5, 6 | dvdsrd 13650 |
. . . . 5
⊢ (𝑅 ∈ Ring → (𝑌 ∥ 𝑍 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍))) |
| 8 | 2, 4, 5, 6 | dvdsrd 13650 |
. . . . 5
⊢ (𝑅 ∈ Ring → (𝑍 ∥ 𝑋 ↔ (𝑍 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋))) |
| 9 | 7, 8 | anbi12d 473 |
. . . 4
⊢ (𝑅 ∈ Ring → ((𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) ↔ ((𝑌 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍) ∧ (𝑍 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋)))) |
| 10 | | an4 586 |
. . . 4
⊢ (((𝑌 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍) ∧ (𝑍 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋)) ↔ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋))) |
| 11 | 9, 10 | bitrdi 196 |
. . 3
⊢ (𝑅 ∈ Ring → ((𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) ↔ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋)))) |
| 12 | | reeanv 2667 |
. . . . 5
⊢
(∃𝑦 ∈
𝐵 ∃𝑥 ∈ 𝐵 ((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) ↔ (∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋)) |
| 13 | 1 | a1i 9 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝐵 = (Base‘𝑅)) |
| 14 | 3 | a1i 9 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → ∥ =
(∥r‘𝑅)) |
| 15 | 5 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑅 ∈ SRing) |
| 16 | | eqidd 2197 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (.r‘𝑅) = (.r‘𝑅)) |
| 17 | | simplrl 535 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
| 18 | | simpll 527 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑅 ∈ Ring) |
| 19 | | simprr 531 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 20 | | simprl 529 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 21 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 22 | 1, 21 | ringcl 13569 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐵) |
| 23 | 18, 19, 20, 22 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐵) |
| 24 | 13, 14, 15, 16, 17, 23 | dvdsrmuld 13652 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑌 ∥ ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑌)) |
| 25 | 1, 21 | ringass 13572 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑌) = (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌))) |
| 26 | 18, 19, 20, 17, 25 | syl13anc 1251 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → ((𝑥(.r‘𝑅)𝑦)(.r‘𝑅)𝑌) = (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌))) |
| 27 | 24, 26 | breqtrd 4059 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → 𝑌 ∥ (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌))) |
| 28 | | oveq2 5930 |
. . . . . . . . 9
⊢ ((𝑦(.r‘𝑅)𝑌) = 𝑍 → (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌)) = (𝑥(.r‘𝑅)𝑍)) |
| 29 | | id 19 |
. . . . . . . . 9
⊢ ((𝑥(.r‘𝑅)𝑍) = 𝑋 → (𝑥(.r‘𝑅)𝑍) = 𝑋) |
| 30 | 28, 29 | sylan9eq 2249 |
. . . . . . . 8
⊢ (((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) → (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌)) = 𝑋) |
| 31 | 30 | breq2d 4045 |
. . . . . . 7
⊢ (((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) → (𝑌 ∥ (𝑥(.r‘𝑅)(𝑦(.r‘𝑅)𝑌)) ↔ 𝑌 ∥ 𝑋)) |
| 32 | 27, 31 | syl5ibcom 155 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) → 𝑌 ∥ 𝑋)) |
| 33 | 32 | rexlimdvva 2622 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐵 ((𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ (𝑥(.r‘𝑅)𝑍) = 𝑋) → 𝑌 ∥ 𝑋)) |
| 34 | 12, 33 | biimtrrid 153 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋) → 𝑌 ∥ 𝑋)) |
| 35 | 34 | expimpd 363 |
. . 3
⊢ (𝑅 ∈ Ring → (((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (∃𝑦 ∈ 𝐵 (𝑦(.r‘𝑅)𝑌) = 𝑍 ∧ ∃𝑥 ∈ 𝐵 (𝑥(.r‘𝑅)𝑍) = 𝑋)) → 𝑌 ∥ 𝑋)) |
| 36 | 11, 35 | sylbid 150 |
. 2
⊢ (𝑅 ∈ Ring → ((𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) → 𝑌 ∥ 𝑋)) |
| 37 | 36 | 3impib 1203 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) → 𝑌 ∥ 𝑋) |