Step | Hyp | Ref
| Expression |
1 | | cauappcvgpr.f |
. . . . . 6
⊢ (𝜑 → 𝐹:Q⟶Q) |
2 | 1 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
𝐹:Q⟶Q) |
3 | | cauappcvgpr.app |
. . . . . 6
⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q
𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q
𝑞)))) |
4 | 3 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
∀𝑝 ∈
Q ∀𝑞
∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q
𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q
𝑞)))) |
5 | | cauappcvgpr.bnd |
. . . . . 6
⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) |
6 | 5 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
∀𝑝 ∈
Q 𝐴
<Q (𝐹‘𝑝)) |
7 | | cauappcvgpr.lim |
. . . . 5
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉 |
8 | | simprl 526 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
𝑥 ∈
Q) |
9 | | simprr 527 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
𝑦 ∈
Q) |
10 | 2, 4, 6, 7, 8, 9 | cauappcvgprlem1 7608 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑥)}, {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑥
+Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉)) |
11 | 2, 4, 6, 7, 8, 9 | cauappcvgprlem2 7609 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))}, {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢}〉) |
12 | 10, 11 | jca 304 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
(〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑥)}, {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑥
+Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑥) +Q
(𝑥
+Q 𝑦))}, {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢}〉)) |
13 | 12 | ralrimivva 2552 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ Q ∀𝑦 ∈ Q
(〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑥)}, {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑥
+Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑥) +Q
(𝑥
+Q 𝑦))}, {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢}〉)) |
14 | | fveq2 5494 |
. . . . . . . 8
⊢ (𝑥 = 𝑞 → (𝐹‘𝑥) = (𝐹‘𝑞)) |
15 | 14 | breq2d 3999 |
. . . . . . 7
⊢ (𝑥 = 𝑞 → (𝑙 <Q (𝐹‘𝑥) ↔ 𝑙 <Q (𝐹‘𝑞))) |
16 | 15 | abbidv 2288 |
. . . . . 6
⊢ (𝑥 = 𝑞 → {𝑙 ∣ 𝑙 <Q (𝐹‘𝑥)} = {𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}) |
17 | 14 | breq1d 3997 |
. . . . . . 7
⊢ (𝑥 = 𝑞 → ((𝐹‘𝑥) <Q 𝑢 ↔ (𝐹‘𝑞) <Q 𝑢)) |
18 | 17 | abbidv 2288 |
. . . . . 6
⊢ (𝑥 = 𝑞 → {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢} = {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}) |
19 | 16, 18 | opeq12d 3771 |
. . . . 5
⊢ (𝑥 = 𝑞 → 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑥)}, {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉) |
20 | | oveq1 5857 |
. . . . . . . . 9
⊢ (𝑥 = 𝑞 → (𝑥 +Q 𝑦) = (𝑞 +Q 𝑦)) |
21 | 20 | breq2d 3999 |
. . . . . . . 8
⊢ (𝑥 = 𝑞 → (𝑙 <Q (𝑥 +Q
𝑦) ↔ 𝑙 <Q
(𝑞
+Q 𝑦))) |
22 | 21 | abbidv 2288 |
. . . . . . 7
⊢ (𝑥 = 𝑞 → {𝑙 ∣ 𝑙 <Q (𝑥 +Q
𝑦)} = {𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑦)}) |
23 | 20 | breq1d 3997 |
. . . . . . . 8
⊢ (𝑥 = 𝑞 → ((𝑥 +Q 𝑦) <Q
𝑢 ↔ (𝑞 +Q
𝑦)
<Q 𝑢)) |
24 | 23 | abbidv 2288 |
. . . . . . 7
⊢ (𝑥 = 𝑞 → {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢} = {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}) |
25 | 22, 24 | opeq12d 3771 |
. . . . . 6
⊢ (𝑥 = 𝑞 → 〈{𝑙 ∣ 𝑙 <Q (𝑥 +Q
𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉) |
26 | 25 | oveq2d 5866 |
. . . . 5
⊢ (𝑥 = 𝑞 → (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑥 +Q
𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉) = (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉)) |
27 | 19, 26 | breq12d 4000 |
. . . 4
⊢ (𝑥 = 𝑞 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑥)}, {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑥
+Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉) ↔
〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉))) |
28 | 14, 20 | oveq12d 5868 |
. . . . . . . 8
⊢ (𝑥 = 𝑞 → ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦)) = ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))) |
29 | 28 | breq2d 3999 |
. . . . . . 7
⊢ (𝑥 = 𝑞 → (𝑙 <Q ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦)) ↔ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑦)))) |
30 | 29 | abbidv 2288 |
. . . . . 6
⊢ (𝑥 = 𝑞 → {𝑙 ∣ 𝑙 <Q ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))} = {𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))}) |
31 | 28 | breq1d 3997 |
. . . . . . 7
⊢ (𝑥 = 𝑞 → (((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢 ↔ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢)) |
32 | 31 | abbidv 2288 |
. . . . . 6
⊢ (𝑥 = 𝑞 → {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢} = {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢}) |
33 | 30, 32 | opeq12d 3771 |
. . . . 5
⊢ (𝑥 = 𝑞 → 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))}, {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢}〉) |
34 | 33 | breq2d 3999 |
. . . 4
⊢ (𝑥 = 𝑞 → (𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))}, {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢}〉 ↔ 𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢}〉)) |
35 | 27, 34 | anbi12d 470 |
. . 3
⊢ (𝑥 = 𝑞 → ((〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑥)}, {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑥
+Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑥) +Q
(𝑥
+Q 𝑦))}, {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢}〉) ↔ (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑦))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢}〉))) |
36 | | oveq2 5858 |
. . . . . . . . 9
⊢ (𝑦 = 𝑟 → (𝑞 +Q 𝑦) = (𝑞 +Q 𝑟)) |
37 | 36 | breq2d 3999 |
. . . . . . . 8
⊢ (𝑦 = 𝑟 → (𝑙 <Q (𝑞 +Q
𝑦) ↔ 𝑙 <Q
(𝑞
+Q 𝑟))) |
38 | 37 | abbidv 2288 |
. . . . . . 7
⊢ (𝑦 = 𝑟 → {𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑦)} = {𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑟)}) |
39 | 36 | breq1d 3997 |
. . . . . . . 8
⊢ (𝑦 = 𝑟 → ((𝑞 +Q 𝑦) <Q
𝑢 ↔ (𝑞 +Q
𝑟)
<Q 𝑢)) |
40 | 39 | abbidv 2288 |
. . . . . . 7
⊢ (𝑦 = 𝑟 → {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢} = {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}) |
41 | 38, 40 | opeq12d 3771 |
. . . . . 6
⊢ (𝑦 = 𝑟 → 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) |
42 | 41 | oveq2d 5866 |
. . . . 5
⊢ (𝑦 = 𝑟 → (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉) = (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉)) |
43 | 42 | breq2d 3999 |
. . . 4
⊢ (𝑦 = 𝑟 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉) ↔
〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉))) |
44 | 36 | oveq2d 5866 |
. . . . . . . 8
⊢ (𝑦 = 𝑟 → ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦)) = ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))) |
45 | 44 | breq2d 3999 |
. . . . . . 7
⊢ (𝑦 = 𝑟 → (𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦)) ↔ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟)))) |
46 | 45 | abbidv 2288 |
. . . . . 6
⊢ (𝑦 = 𝑟 → {𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))} = {𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))}) |
47 | 44 | breq1d 3997 |
. . . . . . 7
⊢ (𝑦 = 𝑟 → (((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢 ↔ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢)) |
48 | 47 | abbidv 2288 |
. . . . . 6
⊢ (𝑦 = 𝑟 → {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢} = {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}) |
49 | 46, 48 | opeq12d 3771 |
. . . . 5
⊢ (𝑦 = 𝑟 → 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉) |
50 | 49 | breq2d 3999 |
. . . 4
⊢ (𝑦 = 𝑟 → (𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢}〉 ↔ 𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉)) |
51 | 43, 50 | anbi12d 470 |
. . 3
⊢ (𝑦 = 𝑟 → ((〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑦))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢}〉) ↔ (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉))) |
52 | 35, 51 | cbvral2v 2709 |
. 2
⊢
(∀𝑥 ∈
Q ∀𝑦
∈ Q (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑥)}, {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑥
+Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑥) +Q
(𝑥
+Q 𝑦))}, {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢}〉) ↔ ∀𝑞 ∈ Q ∀𝑟 ∈ Q
(〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉)) |
53 | 13, 52 | sylib 121 |
1
⊢ (𝜑 → ∀𝑞 ∈ Q ∀𝑟 ∈ Q
(〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉)) |