| Step | Hyp | Ref
| Expression |
| 1 | | cauappcvgpr.f |
. . . . . 6
⊢ (𝜑 → 𝐹:Q⟶Q) |
| 2 | 1 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
𝐹:Q⟶Q) |
| 3 | | cauappcvgpr.app |
. . . . . 6
⊢ (𝜑 → ∀𝑝 ∈ Q ∀𝑞 ∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q
𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q
𝑞)))) |
| 4 | 3 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
∀𝑝 ∈
Q ∀𝑞
∈ Q ((𝐹‘𝑝) <Q ((𝐹‘𝑞) +Q (𝑝 +Q
𝑞)) ∧ (𝐹‘𝑞) <Q ((𝐹‘𝑝) +Q (𝑝 +Q
𝑞)))) |
| 5 | | cauappcvgpr.bnd |
. . . . . 6
⊢ (𝜑 → ∀𝑝 ∈ Q 𝐴 <Q (𝐹‘𝑝)) |
| 6 | 5 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
∀𝑝 ∈
Q 𝐴
<Q (𝐹‘𝑝)) |
| 7 | | cauappcvgpr.lim |
. . . . 5
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑞 ∈ Q (𝑙 +Q
𝑞)
<Q (𝐹‘𝑞)}, {𝑢 ∈ Q ∣ ∃𝑞 ∈ Q ((𝐹‘𝑞) +Q 𝑞) <Q
𝑢}〉 |
| 8 | | simprl 529 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
𝑥 ∈
Q) |
| 9 | | simprr 531 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
𝑦 ∈
Q) |
| 10 | 2, 4, 6, 7, 8, 9 | cauappcvgprlem1 7726 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑥)}, {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑥
+Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉)) |
| 11 | 2, 4, 6, 7, 8, 9 | cauappcvgprlem2 7727 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))}, {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢}〉) |
| 12 | 10, 11 | jca 306 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ Q ∧ 𝑦 ∈ Q)) →
(〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑥)}, {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑥
+Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑥) +Q
(𝑥
+Q 𝑦))}, {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢}〉)) |
| 13 | 12 | ralrimivva 2579 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ Q ∀𝑦 ∈ Q
(〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑥)}, {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑥
+Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑥) +Q
(𝑥
+Q 𝑦))}, {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢}〉)) |
| 14 | | fveq2 5558 |
. . . . . . . 8
⊢ (𝑥 = 𝑞 → (𝐹‘𝑥) = (𝐹‘𝑞)) |
| 15 | 14 | breq2d 4045 |
. . . . . . 7
⊢ (𝑥 = 𝑞 → (𝑙 <Q (𝐹‘𝑥) ↔ 𝑙 <Q (𝐹‘𝑞))) |
| 16 | 15 | abbidv 2314 |
. . . . . 6
⊢ (𝑥 = 𝑞 → {𝑙 ∣ 𝑙 <Q (𝐹‘𝑥)} = {𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}) |
| 17 | 14 | breq1d 4043 |
. . . . . . 7
⊢ (𝑥 = 𝑞 → ((𝐹‘𝑥) <Q 𝑢 ↔ (𝐹‘𝑞) <Q 𝑢)) |
| 18 | 17 | abbidv 2314 |
. . . . . 6
⊢ (𝑥 = 𝑞 → {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢} = {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}) |
| 19 | 16, 18 | opeq12d 3816 |
. . . . 5
⊢ (𝑥 = 𝑞 → 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑥)}, {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉) |
| 20 | | oveq1 5929 |
. . . . . . . . 9
⊢ (𝑥 = 𝑞 → (𝑥 +Q 𝑦) = (𝑞 +Q 𝑦)) |
| 21 | 20 | breq2d 4045 |
. . . . . . . 8
⊢ (𝑥 = 𝑞 → (𝑙 <Q (𝑥 +Q
𝑦) ↔ 𝑙 <Q
(𝑞
+Q 𝑦))) |
| 22 | 21 | abbidv 2314 |
. . . . . . 7
⊢ (𝑥 = 𝑞 → {𝑙 ∣ 𝑙 <Q (𝑥 +Q
𝑦)} = {𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑦)}) |
| 23 | 20 | breq1d 4043 |
. . . . . . . 8
⊢ (𝑥 = 𝑞 → ((𝑥 +Q 𝑦) <Q
𝑢 ↔ (𝑞 +Q
𝑦)
<Q 𝑢)) |
| 24 | 23 | abbidv 2314 |
. . . . . . 7
⊢ (𝑥 = 𝑞 → {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢} = {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}) |
| 25 | 22, 24 | opeq12d 3816 |
. . . . . 6
⊢ (𝑥 = 𝑞 → 〈{𝑙 ∣ 𝑙 <Q (𝑥 +Q
𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉) |
| 26 | 25 | oveq2d 5938 |
. . . . 5
⊢ (𝑥 = 𝑞 → (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑥 +Q
𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉) = (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉)) |
| 27 | 19, 26 | breq12d 4046 |
. . . 4
⊢ (𝑥 = 𝑞 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑥)}, {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑥
+Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉) ↔
〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉))) |
| 28 | 14, 20 | oveq12d 5940 |
. . . . . . . 8
⊢ (𝑥 = 𝑞 → ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦)) = ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))) |
| 29 | 28 | breq2d 4045 |
. . . . . . 7
⊢ (𝑥 = 𝑞 → (𝑙 <Q ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦)) ↔ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑦)))) |
| 30 | 29 | abbidv 2314 |
. . . . . 6
⊢ (𝑥 = 𝑞 → {𝑙 ∣ 𝑙 <Q ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))} = {𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))}) |
| 31 | 28 | breq1d 4043 |
. . . . . . 7
⊢ (𝑥 = 𝑞 → (((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢 ↔ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢)) |
| 32 | 31 | abbidv 2314 |
. . . . . 6
⊢ (𝑥 = 𝑞 → {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢} = {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢}) |
| 33 | 30, 32 | opeq12d 3816 |
. . . . 5
⊢ (𝑥 = 𝑞 → 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))}, {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢}〉) |
| 34 | 33 | breq2d 4045 |
. . . 4
⊢ (𝑥 = 𝑞 → (𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))}, {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢}〉 ↔ 𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢}〉)) |
| 35 | 27, 34 | anbi12d 473 |
. . 3
⊢ (𝑥 = 𝑞 → ((〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑥)}, {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑥
+Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑥) +Q
(𝑥
+Q 𝑦))}, {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢}〉) ↔ (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑦))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢}〉))) |
| 36 | | oveq2 5930 |
. . . . . . . . 9
⊢ (𝑦 = 𝑟 → (𝑞 +Q 𝑦) = (𝑞 +Q 𝑟)) |
| 37 | 36 | breq2d 4045 |
. . . . . . . 8
⊢ (𝑦 = 𝑟 → (𝑙 <Q (𝑞 +Q
𝑦) ↔ 𝑙 <Q
(𝑞
+Q 𝑟))) |
| 38 | 37 | abbidv 2314 |
. . . . . . 7
⊢ (𝑦 = 𝑟 → {𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑦)} = {𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑟)}) |
| 39 | 36 | breq1d 4043 |
. . . . . . . 8
⊢ (𝑦 = 𝑟 → ((𝑞 +Q 𝑦) <Q
𝑢 ↔ (𝑞 +Q
𝑟)
<Q 𝑢)) |
| 40 | 39 | abbidv 2314 |
. . . . . . 7
⊢ (𝑦 = 𝑟 → {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢} = {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}) |
| 41 | 38, 40 | opeq12d 3816 |
. . . . . 6
⊢ (𝑦 = 𝑟 → 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) |
| 42 | 41 | oveq2d 5938 |
. . . . 5
⊢ (𝑦 = 𝑟 → (𝐿 +P 〈{𝑙 ∣ 𝑙 <Q (𝑞 +Q
𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉) = (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉)) |
| 43 | 42 | breq2d 4045 |
. . . 4
⊢ (𝑦 = 𝑟 → (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉) ↔
〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉))) |
| 44 | 36 | oveq2d 5938 |
. . . . . . . 8
⊢ (𝑦 = 𝑟 → ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦)) = ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))) |
| 45 | 44 | breq2d 4045 |
. . . . . . 7
⊢ (𝑦 = 𝑟 → (𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦)) ↔ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟)))) |
| 46 | 45 | abbidv 2314 |
. . . . . 6
⊢ (𝑦 = 𝑟 → {𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))} = {𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))}) |
| 47 | 44 | breq1d 4043 |
. . . . . . 7
⊢ (𝑦 = 𝑟 → (((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢 ↔ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢)) |
| 48 | 47 | abbidv 2314 |
. . . . . 6
⊢ (𝑦 = 𝑟 → {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢} = {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}) |
| 49 | 46, 48 | opeq12d 3816 |
. . . . 5
⊢ (𝑦 = 𝑟 → 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢}〉 = 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉) |
| 50 | 49 | breq2d 4045 |
. . . 4
⊢ (𝑦 = 𝑟 → (𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢}〉 ↔ 𝐿<P 〈{𝑙 ∣ 𝑙 <Q ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉)) |
| 51 | 43, 50 | anbi12d 473 |
. . 3
⊢ (𝑦 = 𝑟 → ((〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑦))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑦))
<Q 𝑢}〉) ↔ (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉))) |
| 52 | 35, 51 | cbvral2v 2742 |
. 2
⊢
(∀𝑥 ∈
Q ∀𝑦
∈ Q (〈{𝑙 ∣ 𝑙 <Q (𝐹‘𝑥)}, {𝑢 ∣ (𝐹‘𝑥) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑥
+Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑥) +Q
(𝑥
+Q 𝑦))}, {𝑢 ∣ ((𝐹‘𝑥) +Q (𝑥 +Q
𝑦))
<Q 𝑢}〉) ↔ ∀𝑞 ∈ Q ∀𝑟 ∈ Q
(〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉)) |
| 53 | 13, 52 | sylib 122 |
1
⊢ (𝜑 → ∀𝑞 ∈ Q ∀𝑟 ∈ Q
(〈{𝑙 ∣ 𝑙 <Q
(𝐹‘𝑞)}, {𝑢 ∣ (𝐹‘𝑞) <Q 𝑢}〉<P (𝐿 +P
〈{𝑙 ∣ 𝑙 <Q
(𝑞
+Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q
𝑢}〉) ∧ 𝐿<P
〈{𝑙 ∣ 𝑙 <Q
((𝐹‘𝑞) +Q
(𝑞
+Q 𝑟))}, {𝑢 ∣ ((𝐹‘𝑞) +Q (𝑞 +Q
𝑟))
<Q 𝑢}〉)) |