ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemlim GIF version

Theorem cauappcvgprlemlim 7493
Description: Lemma for cauappcvgpr 7494. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemlim (𝜑 → ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐹,𝑙,𝑝,𝑞,𝑟,𝑢   𝐿,𝑟
Allowed substitution hints:   𝜑(𝑢,𝑟,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemlim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.f . . . . . 6 (𝜑𝐹:QQ)
21adantr 274 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → 𝐹:QQ)
3 cauappcvgpr.app . . . . . 6 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
43adantr 274 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
5 cauappcvgpr.bnd . . . . . 6 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
65adantr 274 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
7 cauappcvgpr.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
8 simprl 521 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → 𝑥Q)
9 simprr 522 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → 𝑦Q)
102, 4, 6, 7, 8, 9cauappcvgprlem1 7491 . . . 4 ((𝜑 ∧ (𝑥Q𝑦Q)) → ⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩))
112, 4, 6, 7, 8, 9cauappcvgprlem2 7492 . . . 4 ((𝜑 ∧ (𝑥Q𝑦Q)) → 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩)
1210, 11jca 304 . . 3 ((𝜑 ∧ (𝑥Q𝑦Q)) → (⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩))
1312ralrimivva 2517 . 2 (𝜑 → ∀𝑥Q𝑦Q (⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩))
14 fveq2 5429 . . . . . . . 8 (𝑥 = 𝑞 → (𝐹𝑥) = (𝐹𝑞))
1514breq2d 3949 . . . . . . 7 (𝑥 = 𝑞 → (𝑙 <Q (𝐹𝑥) ↔ 𝑙 <Q (𝐹𝑞)))
1615abbidv 2258 . . . . . 6 (𝑥 = 𝑞 → {𝑙𝑙 <Q (𝐹𝑥)} = {𝑙𝑙 <Q (𝐹𝑞)})
1714breq1d 3947 . . . . . . 7 (𝑥 = 𝑞 → ((𝐹𝑥) <Q 𝑢 ↔ (𝐹𝑞) <Q 𝑢))
1817abbidv 2258 . . . . . 6 (𝑥 = 𝑞 → {𝑢 ∣ (𝐹𝑥) <Q 𝑢} = {𝑢 ∣ (𝐹𝑞) <Q 𝑢})
1916, 18opeq12d 3721 . . . . 5 (𝑥 = 𝑞 → ⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩)
20 oveq1 5789 . . . . . . . . 9 (𝑥 = 𝑞 → (𝑥 +Q 𝑦) = (𝑞 +Q 𝑦))
2120breq2d 3949 . . . . . . . 8 (𝑥 = 𝑞 → (𝑙 <Q (𝑥 +Q 𝑦) ↔ 𝑙 <Q (𝑞 +Q 𝑦)))
2221abbidv 2258 . . . . . . 7 (𝑥 = 𝑞 → {𝑙𝑙 <Q (𝑥 +Q 𝑦)} = {𝑙𝑙 <Q (𝑞 +Q 𝑦)})
2320breq1d 3947 . . . . . . . 8 (𝑥 = 𝑞 → ((𝑥 +Q 𝑦) <Q 𝑢 ↔ (𝑞 +Q 𝑦) <Q 𝑢))
2423abbidv 2258 . . . . . . 7 (𝑥 = 𝑞 → {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢} = {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢})
2522, 24opeq12d 3721 . . . . . 6 (𝑥 = 𝑞 → ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩)
2625oveq2d 5798 . . . . 5 (𝑥 = 𝑞 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) = (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩))
2719, 26breq12d 3950 . . . 4 (𝑥 = 𝑞 → (⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ↔ ⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩)))
2814, 20oveq12d 5800 . . . . . . . 8 (𝑥 = 𝑞 → ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) = ((𝐹𝑞) +Q (𝑞 +Q 𝑦)))
2928breq2d 3949 . . . . . . 7 (𝑥 = 𝑞 → (𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) ↔ 𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))))
3029abbidv 2258 . . . . . 6 (𝑥 = 𝑞 → {𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))} = {𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))})
3128breq1d 3947 . . . . . . 7 (𝑥 = 𝑞 → (((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢 ↔ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢))
3231abbidv 2258 . . . . . 6 (𝑥 = 𝑞 → {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢} = {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢})
3330, 32opeq12d 3721 . . . . 5 (𝑥 = 𝑞 → ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩)
3433breq2d 3949 . . . 4 (𝑥 = 𝑞 → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩ ↔ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩))
3527, 34anbi12d 465 . . 3 (𝑥 = 𝑞 → ((⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩)))
36 oveq2 5790 . . . . . . . . 9 (𝑦 = 𝑟 → (𝑞 +Q 𝑦) = (𝑞 +Q 𝑟))
3736breq2d 3949 . . . . . . . 8 (𝑦 = 𝑟 → (𝑙 <Q (𝑞 +Q 𝑦) ↔ 𝑙 <Q (𝑞 +Q 𝑟)))
3837abbidv 2258 . . . . . . 7 (𝑦 = 𝑟 → {𝑙𝑙 <Q (𝑞 +Q 𝑦)} = {𝑙𝑙 <Q (𝑞 +Q 𝑟)})
3936breq1d 3947 . . . . . . . 8 (𝑦 = 𝑟 → ((𝑞 +Q 𝑦) <Q 𝑢 ↔ (𝑞 +Q 𝑟) <Q 𝑢))
4039abbidv 2258 . . . . . . 7 (𝑦 = 𝑟 → {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢} = {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢})
4138, 40opeq12d 3721 . . . . . 6 (𝑦 = 𝑟 → ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩)
4241oveq2d 5798 . . . . 5 (𝑦 = 𝑟 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩) = (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩))
4342breq2d 3949 . . . 4 (𝑦 = 𝑟 → (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩) ↔ ⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩)))
4436oveq2d 5798 . . . . . . . 8 (𝑦 = 𝑟 → ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) = ((𝐹𝑞) +Q (𝑞 +Q 𝑟)))
4544breq2d 3949 . . . . . . 7 (𝑦 = 𝑟 → (𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) ↔ 𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))))
4645abbidv 2258 . . . . . 6 (𝑦 = 𝑟 → {𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))} = {𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))})
4744breq1d 3947 . . . . . . 7 (𝑦 = 𝑟 → (((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢 ↔ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢))
4847abbidv 2258 . . . . . 6 (𝑦 = 𝑟 → {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢} = {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢})
4946, 48opeq12d 3721 . . . . 5 (𝑦 = 𝑟 → ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)
5049breq2d 3949 . . . 4 (𝑦 = 𝑟 → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩ ↔ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
5143, 50anbi12d 465 . . 3 (𝑦 = 𝑟 → ((⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)))
5235, 51cbvral2v 2668 . 2 (∀𝑥Q𝑦Q (⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩) ↔ ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
5313, 52sylib 121 1 (𝜑 → ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  {cab 2126  wral 2417  wrex 2418  {crab 2421  cop 3535   class class class wbr 3937  wf 5127  cfv 5131  (class class class)co 5782  Qcnq 7112   +Q cplq 7114   <Q cltq 7117   +P cpp 7125  <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-iltp 7302
This theorem is referenced by:  cauappcvgpr  7494
  Copyright terms: Public domain W3C validator