ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemlim GIF version

Theorem cauappcvgprlemlim 7602
Description: Lemma for cauappcvgpr 7603. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemlim (𝜑 → ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐹,𝑙,𝑝,𝑞,𝑟,𝑢   𝐿,𝑟
Allowed substitution hints:   𝜑(𝑢,𝑟,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemlim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.f . . . . . 6 (𝜑𝐹:QQ)
21adantr 274 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → 𝐹:QQ)
3 cauappcvgpr.app . . . . . 6 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
43adantr 274 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
5 cauappcvgpr.bnd . . . . . 6 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
65adantr 274 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
7 cauappcvgpr.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
8 simprl 521 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → 𝑥Q)
9 simprr 522 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → 𝑦Q)
102, 4, 6, 7, 8, 9cauappcvgprlem1 7600 . . . 4 ((𝜑 ∧ (𝑥Q𝑦Q)) → ⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩))
112, 4, 6, 7, 8, 9cauappcvgprlem2 7601 . . . 4 ((𝜑 ∧ (𝑥Q𝑦Q)) → 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩)
1210, 11jca 304 . . 3 ((𝜑 ∧ (𝑥Q𝑦Q)) → (⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩))
1312ralrimivva 2548 . 2 (𝜑 → ∀𝑥Q𝑦Q (⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩))
14 fveq2 5486 . . . . . . . 8 (𝑥 = 𝑞 → (𝐹𝑥) = (𝐹𝑞))
1514breq2d 3994 . . . . . . 7 (𝑥 = 𝑞 → (𝑙 <Q (𝐹𝑥) ↔ 𝑙 <Q (𝐹𝑞)))
1615abbidv 2284 . . . . . 6 (𝑥 = 𝑞 → {𝑙𝑙 <Q (𝐹𝑥)} = {𝑙𝑙 <Q (𝐹𝑞)})
1714breq1d 3992 . . . . . . 7 (𝑥 = 𝑞 → ((𝐹𝑥) <Q 𝑢 ↔ (𝐹𝑞) <Q 𝑢))
1817abbidv 2284 . . . . . 6 (𝑥 = 𝑞 → {𝑢 ∣ (𝐹𝑥) <Q 𝑢} = {𝑢 ∣ (𝐹𝑞) <Q 𝑢})
1916, 18opeq12d 3766 . . . . 5 (𝑥 = 𝑞 → ⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩)
20 oveq1 5849 . . . . . . . . 9 (𝑥 = 𝑞 → (𝑥 +Q 𝑦) = (𝑞 +Q 𝑦))
2120breq2d 3994 . . . . . . . 8 (𝑥 = 𝑞 → (𝑙 <Q (𝑥 +Q 𝑦) ↔ 𝑙 <Q (𝑞 +Q 𝑦)))
2221abbidv 2284 . . . . . . 7 (𝑥 = 𝑞 → {𝑙𝑙 <Q (𝑥 +Q 𝑦)} = {𝑙𝑙 <Q (𝑞 +Q 𝑦)})
2320breq1d 3992 . . . . . . . 8 (𝑥 = 𝑞 → ((𝑥 +Q 𝑦) <Q 𝑢 ↔ (𝑞 +Q 𝑦) <Q 𝑢))
2423abbidv 2284 . . . . . . 7 (𝑥 = 𝑞 → {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢} = {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢})
2522, 24opeq12d 3766 . . . . . 6 (𝑥 = 𝑞 → ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩)
2625oveq2d 5858 . . . . 5 (𝑥 = 𝑞 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) = (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩))
2719, 26breq12d 3995 . . . 4 (𝑥 = 𝑞 → (⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ↔ ⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩)))
2814, 20oveq12d 5860 . . . . . . . 8 (𝑥 = 𝑞 → ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) = ((𝐹𝑞) +Q (𝑞 +Q 𝑦)))
2928breq2d 3994 . . . . . . 7 (𝑥 = 𝑞 → (𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) ↔ 𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))))
3029abbidv 2284 . . . . . 6 (𝑥 = 𝑞 → {𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))} = {𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))})
3128breq1d 3992 . . . . . . 7 (𝑥 = 𝑞 → (((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢 ↔ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢))
3231abbidv 2284 . . . . . 6 (𝑥 = 𝑞 → {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢} = {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢})
3330, 32opeq12d 3766 . . . . 5 (𝑥 = 𝑞 → ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩)
3433breq2d 3994 . . . 4 (𝑥 = 𝑞 → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩ ↔ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩))
3527, 34anbi12d 465 . . 3 (𝑥 = 𝑞 → ((⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩)))
36 oveq2 5850 . . . . . . . . 9 (𝑦 = 𝑟 → (𝑞 +Q 𝑦) = (𝑞 +Q 𝑟))
3736breq2d 3994 . . . . . . . 8 (𝑦 = 𝑟 → (𝑙 <Q (𝑞 +Q 𝑦) ↔ 𝑙 <Q (𝑞 +Q 𝑟)))
3837abbidv 2284 . . . . . . 7 (𝑦 = 𝑟 → {𝑙𝑙 <Q (𝑞 +Q 𝑦)} = {𝑙𝑙 <Q (𝑞 +Q 𝑟)})
3936breq1d 3992 . . . . . . . 8 (𝑦 = 𝑟 → ((𝑞 +Q 𝑦) <Q 𝑢 ↔ (𝑞 +Q 𝑟) <Q 𝑢))
4039abbidv 2284 . . . . . . 7 (𝑦 = 𝑟 → {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢} = {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢})
4138, 40opeq12d 3766 . . . . . 6 (𝑦 = 𝑟 → ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩)
4241oveq2d 5858 . . . . 5 (𝑦 = 𝑟 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩) = (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩))
4342breq2d 3994 . . . 4 (𝑦 = 𝑟 → (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩) ↔ ⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩)))
4436oveq2d 5858 . . . . . . . 8 (𝑦 = 𝑟 → ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) = ((𝐹𝑞) +Q (𝑞 +Q 𝑟)))
4544breq2d 3994 . . . . . . 7 (𝑦 = 𝑟 → (𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) ↔ 𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))))
4645abbidv 2284 . . . . . 6 (𝑦 = 𝑟 → {𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))} = {𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))})
4744breq1d 3992 . . . . . . 7 (𝑦 = 𝑟 → (((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢 ↔ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢))
4847abbidv 2284 . . . . . 6 (𝑦 = 𝑟 → {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢} = {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢})
4946, 48opeq12d 3766 . . . . 5 (𝑦 = 𝑟 → ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)
5049breq2d 3994 . . . 4 (𝑦 = 𝑟 → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩ ↔ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
5143, 50anbi12d 465 . . 3 (𝑦 = 𝑟 → ((⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)))
5235, 51cbvral2v 2705 . 2 (∀𝑥Q𝑦Q (⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩) ↔ ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
5313, 52sylib 121 1 (𝜑 → ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  {cab 2151  wral 2444  wrex 2445  {crab 2448  cop 3579   class class class wbr 3982  wf 5184  cfv 5188  (class class class)co 5842  Qcnq 7221   +Q cplq 7223   <Q cltq 7226   +P cpp 7234  <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-iltp 7411
This theorem is referenced by:  cauappcvgpr  7603
  Copyright terms: Public domain W3C validator