ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemlim GIF version

Theorem cauappcvgprlemlim 7856
Description: Lemma for cauappcvgpr 7857. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
Assertion
Ref Expression
cauappcvgprlemlim (𝜑 → ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐹,𝑙,𝑝,𝑞,𝑟,𝑢   𝐿,𝑟
Allowed substitution hints:   𝜑(𝑢,𝑟,𝑙)   𝐴(𝑢,𝑟,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlemlim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.f . . . . . 6 (𝜑𝐹:QQ)
21adantr 276 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → 𝐹:QQ)
3 cauappcvgpr.app . . . . . 6 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
43adantr 276 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
5 cauappcvgpr.bnd . . . . . 6 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
65adantr 276 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
7 cauappcvgpr.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
8 simprl 529 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → 𝑥Q)
9 simprr 531 . . . . 5 ((𝜑 ∧ (𝑥Q𝑦Q)) → 𝑦Q)
102, 4, 6, 7, 8, 9cauappcvgprlem1 7854 . . . 4 ((𝜑 ∧ (𝑥Q𝑦Q)) → ⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩))
112, 4, 6, 7, 8, 9cauappcvgprlem2 7855 . . . 4 ((𝜑 ∧ (𝑥Q𝑦Q)) → 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩)
1210, 11jca 306 . . 3 ((𝜑 ∧ (𝑥Q𝑦Q)) → (⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩))
1312ralrimivva 2612 . 2 (𝜑 → ∀𝑥Q𝑦Q (⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩))
14 fveq2 5629 . . . . . . . 8 (𝑥 = 𝑞 → (𝐹𝑥) = (𝐹𝑞))
1514breq2d 4095 . . . . . . 7 (𝑥 = 𝑞 → (𝑙 <Q (𝐹𝑥) ↔ 𝑙 <Q (𝐹𝑞)))
1615abbidv 2347 . . . . . 6 (𝑥 = 𝑞 → {𝑙𝑙 <Q (𝐹𝑥)} = {𝑙𝑙 <Q (𝐹𝑞)})
1714breq1d 4093 . . . . . . 7 (𝑥 = 𝑞 → ((𝐹𝑥) <Q 𝑢 ↔ (𝐹𝑞) <Q 𝑢))
1817abbidv 2347 . . . . . 6 (𝑥 = 𝑞 → {𝑢 ∣ (𝐹𝑥) <Q 𝑢} = {𝑢 ∣ (𝐹𝑞) <Q 𝑢})
1916, 18opeq12d 3865 . . . . 5 (𝑥 = 𝑞 → ⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩)
20 oveq1 6014 . . . . . . . . 9 (𝑥 = 𝑞 → (𝑥 +Q 𝑦) = (𝑞 +Q 𝑦))
2120breq2d 4095 . . . . . . . 8 (𝑥 = 𝑞 → (𝑙 <Q (𝑥 +Q 𝑦) ↔ 𝑙 <Q (𝑞 +Q 𝑦)))
2221abbidv 2347 . . . . . . 7 (𝑥 = 𝑞 → {𝑙𝑙 <Q (𝑥 +Q 𝑦)} = {𝑙𝑙 <Q (𝑞 +Q 𝑦)})
2320breq1d 4093 . . . . . . . 8 (𝑥 = 𝑞 → ((𝑥 +Q 𝑦) <Q 𝑢 ↔ (𝑞 +Q 𝑦) <Q 𝑢))
2423abbidv 2347 . . . . . . 7 (𝑥 = 𝑞 → {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢} = {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢})
2522, 24opeq12d 3865 . . . . . 6 (𝑥 = 𝑞 → ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩)
2625oveq2d 6023 . . . . 5 (𝑥 = 𝑞 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) = (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩))
2719, 26breq12d 4096 . . . 4 (𝑥 = 𝑞 → (⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ↔ ⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩)))
2814, 20oveq12d 6025 . . . . . . . 8 (𝑥 = 𝑞 → ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) = ((𝐹𝑞) +Q (𝑞 +Q 𝑦)))
2928breq2d 4095 . . . . . . 7 (𝑥 = 𝑞 → (𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) ↔ 𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))))
3029abbidv 2347 . . . . . 6 (𝑥 = 𝑞 → {𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))} = {𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))})
3128breq1d 4093 . . . . . . 7 (𝑥 = 𝑞 → (((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢 ↔ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢))
3231abbidv 2347 . . . . . 6 (𝑥 = 𝑞 → {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢} = {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢})
3330, 32opeq12d 3865 . . . . 5 (𝑥 = 𝑞 → ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩)
3433breq2d 4095 . . . 4 (𝑥 = 𝑞 → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩ ↔ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩))
3527, 34anbi12d 473 . . 3 (𝑥 = 𝑞 → ((⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩)))
36 oveq2 6015 . . . . . . . . 9 (𝑦 = 𝑟 → (𝑞 +Q 𝑦) = (𝑞 +Q 𝑟))
3736breq2d 4095 . . . . . . . 8 (𝑦 = 𝑟 → (𝑙 <Q (𝑞 +Q 𝑦) ↔ 𝑙 <Q (𝑞 +Q 𝑟)))
3837abbidv 2347 . . . . . . 7 (𝑦 = 𝑟 → {𝑙𝑙 <Q (𝑞 +Q 𝑦)} = {𝑙𝑙 <Q (𝑞 +Q 𝑟)})
3936breq1d 4093 . . . . . . . 8 (𝑦 = 𝑟 → ((𝑞 +Q 𝑦) <Q 𝑢 ↔ (𝑞 +Q 𝑟) <Q 𝑢))
4039abbidv 2347 . . . . . . 7 (𝑦 = 𝑟 → {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢} = {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢})
4138, 40opeq12d 3865 . . . . . 6 (𝑦 = 𝑟 → ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩)
4241oveq2d 6023 . . . . 5 (𝑦 = 𝑟 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩) = (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩))
4342breq2d 4095 . . . 4 (𝑦 = 𝑟 → (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩) ↔ ⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩)))
4436oveq2d 6023 . . . . . . . 8 (𝑦 = 𝑟 → ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) = ((𝐹𝑞) +Q (𝑞 +Q 𝑟)))
4544breq2d 4095 . . . . . . 7 (𝑦 = 𝑟 → (𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) ↔ 𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))))
4645abbidv 2347 . . . . . 6 (𝑦 = 𝑟 → {𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))} = {𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))})
4744breq1d 4093 . . . . . . 7 (𝑦 = 𝑟 → (((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢 ↔ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢))
4847abbidv 2347 . . . . . 6 (𝑦 = 𝑟 → {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢} = {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢})
4946, 48opeq12d 3865 . . . . 5 (𝑦 = 𝑟 → ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩ = ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)
5049breq2d 4095 . . . 4 (𝑦 = 𝑟 → (𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩ ↔ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
5143, 50anbi12d 473 . . 3 (𝑦 = 𝑟 → ((⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑦)}, {𝑢 ∣ (𝑞 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑦)) <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩)))
5235, 51cbvral2v 2778 . 2 (∀𝑥Q𝑦Q (⟨{𝑙𝑙 <Q (𝐹𝑥)}, {𝑢 ∣ (𝐹𝑥) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑥 +Q 𝑦)}, {𝑢 ∣ (𝑥 +Q 𝑦) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑥) +Q (𝑥 +Q 𝑦))}, {𝑢 ∣ ((𝐹𝑥) +Q (𝑥 +Q 𝑦)) <Q 𝑢}⟩) ↔ ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
5313, 52sylib 122 1 (𝜑 → ∀𝑞Q𝑟Q (⟨{𝑙𝑙 <Q (𝐹𝑞)}, {𝑢 ∣ (𝐹𝑞) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑞 +Q 𝑟)}, {𝑢 ∣ (𝑞 +Q 𝑟) <Q 𝑢}⟩) ∧ 𝐿<P ⟨{𝑙𝑙 <Q ((𝐹𝑞) +Q (𝑞 +Q 𝑟))}, {𝑢 ∣ ((𝐹𝑞) +Q (𝑞 +Q 𝑟)) <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  {cab 2215  wral 2508  wrex 2509  {crab 2512  cop 3669   class class class wbr 4083  wf 5314  cfv 5318  (class class class)co 6007  Qcnq 7475   +Q cplq 7477   <Q cltq 7480   +P cpp 7488  <P cltp 7490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-1o 6568  df-2o 6569  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-pli 7500  df-mi 7501  df-lti 7502  df-plpq 7539  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-plqqs 7544  df-mqqs 7545  df-1nqqs 7546  df-rq 7547  df-ltnqqs 7548  df-enq0 7619  df-nq0 7620  df-0nq0 7621  df-plq0 7622  df-mq0 7623  df-inp 7661  df-iplp 7663  df-iltp 7665
This theorem is referenced by:  cauappcvgpr  7857
  Copyright terms: Public domain W3C validator