ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3distr GIF version

Theorem seq3distr 10690
Description: The distributive property for series. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
seq3distr.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seq3distr.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
seq3distr.3 (𝜑𝑁 ∈ (ℤ𝑀))
seq3distr.4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
seq3distr.5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))
seq3distr.t ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑆)
seq3distr.c (𝜑𝐶𝑆)
Assertion
Ref Expression
seq3distr (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦

Proof of Theorem seq3distr
Dummy variables 𝑏 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3distr.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 seq3distr.4 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
3 seq3distr.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 seq3distr.2 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
5 seq3distr.c . . . . . . 7 (𝜑𝐶𝑆)
65adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐶𝑆)
7 seq3distr.t . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑆)
87ralrimivva 2589 . . . . . . . 8 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑆)
9 oveq1 5961 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑥𝑇𝑦) = (𝑎𝑇𝑦))
109eleq1d 2275 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝑥𝑇𝑦) ∈ 𝑆 ↔ (𝑎𝑇𝑦) ∈ 𝑆))
11 oveq2 5962 . . . . . . . . . 10 (𝑦 = 𝑏 → (𝑎𝑇𝑦) = (𝑎𝑇𝑏))
1211eleq1d 2275 . . . . . . . . 9 (𝑦 = 𝑏 → ((𝑎𝑇𝑦) ∈ 𝑆 ↔ (𝑎𝑇𝑏) ∈ 𝑆))
1310, 12cbvral2v 2752 . . . . . . . 8 (∀𝑥𝑆𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑆 ↔ ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆)
148, 13sylib 122 . . . . . . 7 (𝜑 → ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆)
1514adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆)
16 oveq1 5961 . . . . . . . 8 (𝑎 = 𝐶 → (𝑎𝑇𝑏) = (𝐶𝑇𝑏))
1716eleq1d 2275 . . . . . . 7 (𝑎 = 𝐶 → ((𝑎𝑇𝑏) ∈ 𝑆 ↔ (𝐶𝑇𝑏) ∈ 𝑆))
18 oveq2 5962 . . . . . . . 8 (𝑏 = (𝑥 + 𝑦) → (𝐶𝑇𝑏) = (𝐶𝑇(𝑥 + 𝑦)))
1918eleq1d 2275 . . . . . . 7 (𝑏 = (𝑥 + 𝑦) → ((𝐶𝑇𝑏) ∈ 𝑆 ↔ (𝐶𝑇(𝑥 + 𝑦)) ∈ 𝑆))
2017, 19rspc2va 2893 . . . . . 6 (((𝐶𝑆 ∧ (𝑥 + 𝑦) ∈ 𝑆) ∧ ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆) → (𝐶𝑇(𝑥 + 𝑦)) ∈ 𝑆)
216, 1, 15, 20syl21anc 1249 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) ∈ 𝑆)
22 oveq2 5962 . . . . . 6 (𝑧 = (𝑥 + 𝑦) → (𝐶𝑇𝑧) = (𝐶𝑇(𝑥 + 𝑦)))
23 eqid 2206 . . . . . 6 (𝑧𝑆 ↦ (𝐶𝑇𝑧)) = (𝑧𝑆 ↦ (𝐶𝑇𝑧))
2422, 23fvmptg 5665 . . . . 5 (((𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐶𝑇(𝑥 + 𝑦)) ∈ 𝑆) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦)))
251, 21, 24syl2anc 411 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦)))
26 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
27 oveq2 5962 . . . . . . . . 9 (𝑏 = 𝑥 → (𝐶𝑇𝑏) = (𝐶𝑇𝑥))
2827eleq1d 2275 . . . . . . . 8 (𝑏 = 𝑥 → ((𝐶𝑇𝑏) ∈ 𝑆 ↔ (𝐶𝑇𝑥) ∈ 𝑆))
2917, 28rspc2va 2893 . . . . . . 7 (((𝐶𝑆𝑥𝑆) ∧ ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆) → (𝐶𝑇𝑥) ∈ 𝑆)
306, 26, 15, 29syl21anc 1249 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇𝑥) ∈ 𝑆)
31 oveq2 5962 . . . . . . 7 (𝑧 = 𝑥 → (𝐶𝑇𝑧) = (𝐶𝑇𝑥))
3231, 23fvmptg 5665 . . . . . 6 ((𝑥𝑆 ∧ (𝐶𝑇𝑥) ∈ 𝑆) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥))
3326, 30, 32syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥))
34 simprr 531 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
35 oveq2 5962 . . . . . . . . 9 (𝑏 = 𝑦 → (𝐶𝑇𝑏) = (𝐶𝑇𝑦))
3635eleq1d 2275 . . . . . . . 8 (𝑏 = 𝑦 → ((𝐶𝑇𝑏) ∈ 𝑆 ↔ (𝐶𝑇𝑦) ∈ 𝑆))
3717, 36rspc2va 2893 . . . . . . 7 (((𝐶𝑆𝑦𝑆) ∧ ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆) → (𝐶𝑇𝑦) ∈ 𝑆)
386, 34, 15, 37syl21anc 1249 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇𝑦) ∈ 𝑆)
39 oveq2 5962 . . . . . . 7 (𝑧 = 𝑦 → (𝐶𝑇𝑧) = (𝐶𝑇𝑦))
4039, 23fvmptg 5665 . . . . . 6 ((𝑦𝑆 ∧ (𝐶𝑇𝑦) ∈ 𝑆) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦))
4134, 38, 40syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦))
4233, 41oveq12d 5972 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
434, 25, 423eqtr4d 2249 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦)))
445adantr 276 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝐶𝑆)
4514adantr 276 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆)
46 oveq2 5962 . . . . . . . 8 (𝑏 = (𝐺𝑥) → (𝐶𝑇𝑏) = (𝐶𝑇(𝐺𝑥)))
4746eleq1d 2275 . . . . . . 7 (𝑏 = (𝐺𝑥) → ((𝐶𝑇𝑏) ∈ 𝑆 ↔ (𝐶𝑇(𝐺𝑥)) ∈ 𝑆))
4817, 47rspc2va 2893 . . . . . 6 (((𝐶𝑆 ∧ (𝐺𝑥) ∈ 𝑆) ∧ ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆) → (𝐶𝑇(𝐺𝑥)) ∈ 𝑆)
4944, 2, 45, 48syl21anc 1249 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐶𝑇(𝐺𝑥)) ∈ 𝑆)
50 oveq2 5962 . . . . . 6 (𝑧 = (𝐺𝑥) → (𝐶𝑇𝑧) = (𝐶𝑇(𝐺𝑥)))
5150, 23fvmptg 5665 . . . . 5 (((𝐺𝑥) ∈ 𝑆 ∧ (𝐶𝑇(𝐺𝑥)) ∈ 𝑆) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐶𝑇(𝐺𝑥)))
522, 49, 51syl2anc 411 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐶𝑇(𝐺𝑥)))
53 seq3distr.5 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))
5452, 53eqtr4d 2242 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐹𝑥))
5553, 49eqeltrd 2283 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
561, 2, 3, 43, 54, 55, 1seq3homo 10685 . 2 (𝜑 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))
57 eqid 2206 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
58 eluzel2 9666 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
593, 58syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
6057, 59, 2, 1seqf 10622 . . . 4 (𝜑 → seq𝑀( + , 𝐺):(ℤ𝑀)⟶𝑆)
6160, 3ffvelcdmd 5726 . . 3 (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆)
627, 5, 61caovcld 6110 . . 3 (𝜑 → (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)) ∈ 𝑆)
63 oveq2 5962 . . . 4 (𝑧 = (seq𝑀( + , 𝐺)‘𝑁) → (𝐶𝑇𝑧) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
6463, 23fvmptg 5665 . . 3 (((seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆 ∧ (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)) ∈ 𝑆) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
6561, 62, 64syl2anc 411 . 2 (𝜑 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
6656, 65eqtr3d 2241 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  cmpt 4110  cfv 5277  (class class class)co 5954  cz 9385  cuz 9661  seqcseq 10605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-inn 9050  df-n0 9309  df-z 9386  df-uz 9662  df-seqfrec 10606
This theorem is referenced by:  isermulc2  11701  fsummulc2  11809
  Copyright terms: Public domain W3C validator