ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3distr GIF version

Theorem seq3distr 10762
Description: The distributive property for series. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
seq3distr.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seq3distr.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
seq3distr.3 (𝜑𝑁 ∈ (ℤ𝑀))
seq3distr.4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
seq3distr.5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))
seq3distr.t ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑆)
seq3distr.c (𝜑𝐶𝑆)
Assertion
Ref Expression
seq3distr (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦

Proof of Theorem seq3distr
Dummy variables 𝑏 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3distr.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 seq3distr.4 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
3 seq3distr.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 seq3distr.2 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
5 seq3distr.c . . . . . . 7 (𝜑𝐶𝑆)
65adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝐶𝑆)
7 seq3distr.t . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑇𝑦) ∈ 𝑆)
87ralrimivva 2612 . . . . . . . 8 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑆)
9 oveq1 6014 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑥𝑇𝑦) = (𝑎𝑇𝑦))
109eleq1d 2298 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝑥𝑇𝑦) ∈ 𝑆 ↔ (𝑎𝑇𝑦) ∈ 𝑆))
11 oveq2 6015 . . . . . . . . . 10 (𝑦 = 𝑏 → (𝑎𝑇𝑦) = (𝑎𝑇𝑏))
1211eleq1d 2298 . . . . . . . . 9 (𝑦 = 𝑏 → ((𝑎𝑇𝑦) ∈ 𝑆 ↔ (𝑎𝑇𝑏) ∈ 𝑆))
1310, 12cbvral2v 2778 . . . . . . . 8 (∀𝑥𝑆𝑦𝑆 (𝑥𝑇𝑦) ∈ 𝑆 ↔ ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆)
148, 13sylib 122 . . . . . . 7 (𝜑 → ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆)
1514adantr 276 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆)
16 oveq1 6014 . . . . . . . 8 (𝑎 = 𝐶 → (𝑎𝑇𝑏) = (𝐶𝑇𝑏))
1716eleq1d 2298 . . . . . . 7 (𝑎 = 𝐶 → ((𝑎𝑇𝑏) ∈ 𝑆 ↔ (𝐶𝑇𝑏) ∈ 𝑆))
18 oveq2 6015 . . . . . . . 8 (𝑏 = (𝑥 + 𝑦) → (𝐶𝑇𝑏) = (𝐶𝑇(𝑥 + 𝑦)))
1918eleq1d 2298 . . . . . . 7 (𝑏 = (𝑥 + 𝑦) → ((𝐶𝑇𝑏) ∈ 𝑆 ↔ (𝐶𝑇(𝑥 + 𝑦)) ∈ 𝑆))
2017, 19rspc2va 2921 . . . . . 6 (((𝐶𝑆 ∧ (𝑥 + 𝑦) ∈ 𝑆) ∧ ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆) → (𝐶𝑇(𝑥 + 𝑦)) ∈ 𝑆)
216, 1, 15, 20syl21anc 1270 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇(𝑥 + 𝑦)) ∈ 𝑆)
22 oveq2 6015 . . . . . 6 (𝑧 = (𝑥 + 𝑦) → (𝐶𝑇𝑧) = (𝐶𝑇(𝑥 + 𝑦)))
23 eqid 2229 . . . . . 6 (𝑧𝑆 ↦ (𝐶𝑇𝑧)) = (𝑧𝑆 ↦ (𝐶𝑇𝑧))
2422, 23fvmptg 5712 . . . . 5 (((𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐶𝑇(𝑥 + 𝑦)) ∈ 𝑆) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦)))
251, 21, 24syl2anc 411 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (𝐶𝑇(𝑥 + 𝑦)))
26 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
27 oveq2 6015 . . . . . . . . 9 (𝑏 = 𝑥 → (𝐶𝑇𝑏) = (𝐶𝑇𝑥))
2827eleq1d 2298 . . . . . . . 8 (𝑏 = 𝑥 → ((𝐶𝑇𝑏) ∈ 𝑆 ↔ (𝐶𝑇𝑥) ∈ 𝑆))
2917, 28rspc2va 2921 . . . . . . 7 (((𝐶𝑆𝑥𝑆) ∧ ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆) → (𝐶𝑇𝑥) ∈ 𝑆)
306, 26, 15, 29syl21anc 1270 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇𝑥) ∈ 𝑆)
31 oveq2 6015 . . . . . . 7 (𝑧 = 𝑥 → (𝐶𝑇𝑧) = (𝐶𝑇𝑥))
3231, 23fvmptg 5712 . . . . . 6 ((𝑥𝑆 ∧ (𝐶𝑇𝑥) ∈ 𝑆) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥))
3326, 30, 32syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) = (𝐶𝑇𝑥))
34 simprr 531 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
35 oveq2 6015 . . . . . . . . 9 (𝑏 = 𝑦 → (𝐶𝑇𝑏) = (𝐶𝑇𝑦))
3635eleq1d 2298 . . . . . . . 8 (𝑏 = 𝑦 → ((𝐶𝑇𝑏) ∈ 𝑆 ↔ (𝐶𝑇𝑦) ∈ 𝑆))
3717, 36rspc2va 2921 . . . . . . 7 (((𝐶𝑆𝑦𝑆) ∧ ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆) → (𝐶𝑇𝑦) ∈ 𝑆)
386, 34, 15, 37syl21anc 1270 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐶𝑇𝑦) ∈ 𝑆)
39 oveq2 6015 . . . . . . 7 (𝑧 = 𝑦 → (𝐶𝑇𝑧) = (𝐶𝑇𝑦))
4039, 23fvmptg 5712 . . . . . 6 ((𝑦𝑆 ∧ (𝐶𝑇𝑦) ∈ 𝑆) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦))
4134, 38, 40syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦) = (𝐶𝑇𝑦))
4233, 41oveq12d 6025 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦)) = ((𝐶𝑇𝑥) + (𝐶𝑇𝑦)))
434, 25, 423eqtr4d 2272 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝑥 + 𝑦)) = (((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑥) + ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘𝑦)))
445adantr 276 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → 𝐶𝑆)
4514adantr 276 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆)
46 oveq2 6015 . . . . . . . 8 (𝑏 = (𝐺𝑥) → (𝐶𝑇𝑏) = (𝐶𝑇(𝐺𝑥)))
4746eleq1d 2298 . . . . . . 7 (𝑏 = (𝐺𝑥) → ((𝐶𝑇𝑏) ∈ 𝑆 ↔ (𝐶𝑇(𝐺𝑥)) ∈ 𝑆))
4817, 47rspc2va 2921 . . . . . 6 (((𝐶𝑆 ∧ (𝐺𝑥) ∈ 𝑆) ∧ ∀𝑎𝑆𝑏𝑆 (𝑎𝑇𝑏) ∈ 𝑆) → (𝐶𝑇(𝐺𝑥)) ∈ 𝑆)
4944, 2, 45, 48syl21anc 1270 . . . . 5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐶𝑇(𝐺𝑥)) ∈ 𝑆)
50 oveq2 6015 . . . . . 6 (𝑧 = (𝐺𝑥) → (𝐶𝑇𝑧) = (𝐶𝑇(𝐺𝑥)))
5150, 23fvmptg 5712 . . . . 5 (((𝐺𝑥) ∈ 𝑆 ∧ (𝐶𝑇(𝐺𝑥)) ∈ 𝑆) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐶𝑇(𝐺𝑥)))
522, 49, 51syl2anc 411 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐶𝑇(𝐺𝑥)))
53 seq3distr.5 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) = (𝐶𝑇(𝐺𝑥)))
5452, 53eqtr4d 2265 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(𝐺𝑥)) = (𝐹𝑥))
5553, 49eqeltrd 2306 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
561, 2, 3, 43, 54, 55, 1seq3homo 10757 . 2 (𝜑 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))
57 eqid 2229 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
58 eluzel2 9735 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
593, 58syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
6057, 59, 2, 1seqf 10694 . . . 4 (𝜑 → seq𝑀( + , 𝐺):(ℤ𝑀)⟶𝑆)
6160, 3ffvelcdmd 5773 . . 3 (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆)
627, 5, 61caovcld 6165 . . 3 (𝜑 → (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)) ∈ 𝑆)
63 oveq2 6015 . . . 4 (𝑧 = (seq𝑀( + , 𝐺)‘𝑁) → (𝐶𝑇𝑧) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
6463, 23fvmptg 5712 . . 3 (((seq𝑀( + , 𝐺)‘𝑁) ∈ 𝑆 ∧ (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)) ∈ 𝑆) → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
6561, 62, 64syl2anc 411 . 2 (𝜑 → ((𝑧𝑆 ↦ (𝐶𝑇𝑧))‘(seq𝑀( + , 𝐺)‘𝑁)) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
6656, 65eqtr3d 2264 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (𝐶𝑇(seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  cmpt 4145  cfv 5318  (class class class)co 6007  cz 9454  cuz 9730  seqcseq 10677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-seqfrec 10678
This theorem is referenced by:  isermulc2  11859  fsummulc2  11967
  Copyright terms: Public domain W3C validator