ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodcl2lem GIF version

Theorem fprodcl2lem 11546
Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.)
Hypotheses
Ref Expression
fprodcllem.1 (𝜑𝑆 ⊆ ℂ)
fprodcllem.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
fprodcllem.3 (𝜑𝐴 ∈ Fin)
fprodcllem.4 ((𝜑𝑘𝐴) → 𝐵𝑆)
fprodcl2lem.5 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
fprodcl2lem (𝜑 → ∏𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑆,𝑘,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodcl2lem
Dummy variables 𝑤 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodcl2lem.5 . . 3 (𝜑𝐴 ≠ ∅)
21neneqd 2357 . 2 (𝜑 → ¬ 𝐴 = ∅)
3 eqeq1 2172 . . . . 5 (𝑤 = ∅ → (𝑤 = ∅ ↔ ∅ = ∅))
4 prodeq1 11494 . . . . . 6 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
54eleq1d 2235 . . . . 5 (𝑤 = ∅ → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘 ∈ ∅ 𝐵𝑆))
63, 5orbi12d 783 . . . 4 (𝑤 = ∅ → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ (∅ = ∅ ∨ ∏𝑘 ∈ ∅ 𝐵𝑆)))
7 eqeq1 2172 . . . . 5 (𝑤 = 𝑦 → (𝑤 = ∅ ↔ 𝑦 = ∅))
8 prodeq1 11494 . . . . . 6 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
98eleq1d 2235 . . . . 5 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘𝑦 𝐵𝑆))
107, 9orbi12d 783 . . . 4 (𝑤 = 𝑦 → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ (𝑦 = ∅ ∨ ∏𝑘𝑦 𝐵𝑆)))
11 eqeq1 2172 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 = ∅ ↔ (𝑦 ∪ {𝑧}) = ∅))
12 prodeq1 11494 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1312eleq1d 2235 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆))
1411, 13orbi12d 783 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
15 eqeq1 2172 . . . . 5 (𝑤 = 𝐴 → (𝑤 = ∅ ↔ 𝐴 = ∅))
16 prodeq1 11494 . . . . . 6 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
1716eleq1d 2235 . . . . 5 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘𝐴 𝐵𝑆))
1815, 17orbi12d 783 . . . 4 (𝑤 = 𝐴 → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ (𝐴 = ∅ ∨ ∏𝑘𝐴 𝐵𝑆)))
19 eqidd 2166 . . . . 5 (𝜑 → ∅ = ∅)
2019orcd 723 . . . 4 (𝜑 → (∅ = ∅ ∨ ∏𝑘 ∈ ∅ 𝐵𝑆))
21 nfcsb1v 3078 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵
22 simplr 520 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
23 simprr 522 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
2423eldifbd 3128 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
25 fprodcllem.1 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℂ)
2625ad3antrrr 484 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑆 ⊆ ℂ)
27 simplll 523 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
28 simplrl 525 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
29 simpr 109 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
3028, 29sseldd 3143 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
31 fprodcllem.4 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵𝑆)
3227, 30, 31syl2anc 409 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵𝑆)
3326, 32sseldd 3143 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
3425ad2antrr 480 . . . . . . . . . . 11 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑆 ⊆ ℂ)
35 simpll 519 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
3623eldifad 3127 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
3731ralrimiva 2539 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝐴 𝐵𝑆)
38 nfv 1516 . . . . . . . . . . . . . . 15 𝑧 𝐵𝑆
3921nfel1 2319 . . . . . . . . . . . . . . 15 𝑘𝑧 / 𝑘𝐵𝑆
40 csbeq1a 3054 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4140eleq1d 2235 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝐵𝑆𝑧 / 𝑘𝐵𝑆))
4238, 39, 41cbvral 2688 . . . . . . . . . . . . . 14 (∀𝑘𝐴 𝐵𝑆 ↔ ∀𝑧𝐴 𝑧 / 𝑘𝐵𝑆)
4337, 42sylib 121 . . . . . . . . . . . . 13 (𝜑 → ∀𝑧𝐴 𝑧 / 𝑘𝐵𝑆)
4443r19.21bi 2554 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵𝑆)
4535, 36, 44syl2anc 409 . . . . . . . . . . 11 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵𝑆)
4634, 45sseldd 3143 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
4721, 22, 23, 24, 33, 46, 40fprodunsn 11545 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
4847adantr 274 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
49 simpr 109 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → 𝑦 = ∅)
5049prodeq1d 11505 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘𝑦 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
51 prod0 11526 . . . . . . . . . . . 12 𝑘 ∈ ∅ 𝐵 = 1
5250, 51eqtrdi 2215 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘𝑦 𝐵 = 1)
5352oveq1d 5857 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) = (1 · 𝑧 / 𝑘𝐵))
5446adantr 274 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5554mulid2d 7917 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (1 · 𝑧 / 𝑘𝐵) = 𝑧 / 𝑘𝐵)
5653, 55eqtrd 2198 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) = 𝑧 / 𝑘𝐵)
5745adantr 274 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → 𝑧 / 𝑘𝐵𝑆)
5856, 57eqeltrd 2243 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆)
5948, 58eqeltrd 2243 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)
6059olcd 724 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆))
6160ex 114 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 = ∅ → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
6247adantr 274 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
63 fprodcllem.2 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
6463ralrimivva 2548 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥 · 𝑦) ∈ 𝑆)
65 oveq1 5849 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
6665eleq1d 2235 . . . . . . . . . . . 12 (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝑆 ↔ (𝑢 · 𝑦) ∈ 𝑆))
67 oveq2 5850 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
6867eleq1d 2235 . . . . . . . . . . . 12 (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝑆 ↔ (𝑢 · 𝑣) ∈ 𝑆))
6966, 68cbvral2v 2705 . . . . . . . . . . 11 (∀𝑥𝑆𝑦𝑆 (𝑥 · 𝑦) ∈ 𝑆 ↔ ∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆)
7064, 69sylib 121 . . . . . . . . . 10 (𝜑 → ∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆)
7170ad3antrrr 484 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆)
72 simpr 109 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∏𝑘𝑦 𝐵𝑆)
7345adantr 274 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → 𝑧 / 𝑘𝐵𝑆)
74 oveq1 5849 . . . . . . . . . . . 12 (𝑢 = ∏𝑘𝑦 𝐵 → (𝑢 · 𝑣) = (∏𝑘𝑦 𝐵 · 𝑣))
7574eleq1d 2235 . . . . . . . . . . 11 (𝑢 = ∏𝑘𝑦 𝐵 → ((𝑢 · 𝑣) ∈ 𝑆 ↔ (∏𝑘𝑦 𝐵 · 𝑣) ∈ 𝑆))
76 oveq2 5850 . . . . . . . . . . . 12 (𝑣 = 𝑧 / 𝑘𝐵 → (∏𝑘𝑦 𝐵 · 𝑣) = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7776eleq1d 2235 . . . . . . . . . . 11 (𝑣 = 𝑧 / 𝑘𝐵 → ((∏𝑘𝑦 𝐵 · 𝑣) ∈ 𝑆 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆))
7875, 77rspc2v 2843 . . . . . . . . . 10 ((∏𝑘𝑦 𝐵𝑆𝑧 / 𝑘𝐵𝑆) → (∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆 → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆))
7972, 73, 78syl2anc 409 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → (∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆 → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆))
8071, 79mpd 13 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆)
8162, 80eqeltrd 2243 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)
8281olcd 724 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆))
8382ex 114 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵𝑆 → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
8461, 83jaod 707 . . . 4 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((𝑦 = ∅ ∨ ∏𝑘𝑦 𝐵𝑆) → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
85 fprodcllem.3 . . . 4 (𝜑𝐴 ∈ Fin)
866, 10, 14, 18, 20, 84, 85findcard2sd 6858 . . 3 (𝜑 → (𝐴 = ∅ ∨ ∏𝑘𝐴 𝐵𝑆))
8786orcomd 719 . 2 (𝜑 → (∏𝑘𝐴 𝐵𝑆𝐴 = ∅))
882, 87ecased 1339 1 (𝜑 → ∏𝑘𝐴 𝐵𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1343  wcel 2136  wne 2336  wral 2444  csb 3045  cdif 3113  cun 3114  wss 3116  c0 3409  {csn 3576  (class class class)co 5842  Fincfn 6706  cc 7751  1c1 7754   · cmul 7758  cprod 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-proddc 11492
This theorem is referenced by:  fprodcllem  11547
  Copyright terms: Public domain W3C validator