ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodcl2lem GIF version

Theorem fprodcl2lem 11770
Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.)
Hypotheses
Ref Expression
fprodcllem.1 (𝜑𝑆 ⊆ ℂ)
fprodcllem.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
fprodcllem.3 (𝜑𝐴 ∈ Fin)
fprodcllem.4 ((𝜑𝑘𝐴) → 𝐵𝑆)
fprodcl2lem.5 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
fprodcl2lem (𝜑 → ∏𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑆,𝑘,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodcl2lem
Dummy variables 𝑤 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodcl2lem.5 . . 3 (𝜑𝐴 ≠ ∅)
21neneqd 2388 . 2 (𝜑 → ¬ 𝐴 = ∅)
3 eqeq1 2203 . . . . 5 (𝑤 = ∅ → (𝑤 = ∅ ↔ ∅ = ∅))
4 prodeq1 11718 . . . . . 6 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
54eleq1d 2265 . . . . 5 (𝑤 = ∅ → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘 ∈ ∅ 𝐵𝑆))
63, 5orbi12d 794 . . . 4 (𝑤 = ∅ → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ (∅ = ∅ ∨ ∏𝑘 ∈ ∅ 𝐵𝑆)))
7 eqeq1 2203 . . . . 5 (𝑤 = 𝑦 → (𝑤 = ∅ ↔ 𝑦 = ∅))
8 prodeq1 11718 . . . . . 6 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
98eleq1d 2265 . . . . 5 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘𝑦 𝐵𝑆))
107, 9orbi12d 794 . . . 4 (𝑤 = 𝑦 → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ (𝑦 = ∅ ∨ ∏𝑘𝑦 𝐵𝑆)))
11 eqeq1 2203 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 = ∅ ↔ (𝑦 ∪ {𝑧}) = ∅))
12 prodeq1 11718 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1312eleq1d 2265 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆))
1411, 13orbi12d 794 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
15 eqeq1 2203 . . . . 5 (𝑤 = 𝐴 → (𝑤 = ∅ ↔ 𝐴 = ∅))
16 prodeq1 11718 . . . . . 6 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
1716eleq1d 2265 . . . . 5 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘𝐴 𝐵𝑆))
1815, 17orbi12d 794 . . . 4 (𝑤 = 𝐴 → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ (𝐴 = ∅ ∨ ∏𝑘𝐴 𝐵𝑆)))
19 eqidd 2197 . . . . 5 (𝜑 → ∅ = ∅)
2019orcd 734 . . . 4 (𝜑 → (∅ = ∅ ∨ ∏𝑘 ∈ ∅ 𝐵𝑆))
21 nfcsb1v 3117 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵
22 simplr 528 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
23 simprr 531 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
2423eldifbd 3169 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
25 fprodcllem.1 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℂ)
2625ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑆 ⊆ ℂ)
27 simplll 533 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
28 simplrl 535 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
29 simpr 110 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
3028, 29sseldd 3184 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
31 fprodcllem.4 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵𝑆)
3227, 30, 31syl2anc 411 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵𝑆)
3326, 32sseldd 3184 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
3425ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑆 ⊆ ℂ)
35 simpll 527 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
3623eldifad 3168 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
3731ralrimiva 2570 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝐴 𝐵𝑆)
38 nfv 1542 . . . . . . . . . . . . . . 15 𝑧 𝐵𝑆
3921nfel1 2350 . . . . . . . . . . . . . . 15 𝑘𝑧 / 𝑘𝐵𝑆
40 csbeq1a 3093 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4140eleq1d 2265 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝐵𝑆𝑧 / 𝑘𝐵𝑆))
4238, 39, 41cbvral 2725 . . . . . . . . . . . . . 14 (∀𝑘𝐴 𝐵𝑆 ↔ ∀𝑧𝐴 𝑧 / 𝑘𝐵𝑆)
4337, 42sylib 122 . . . . . . . . . . . . 13 (𝜑 → ∀𝑧𝐴 𝑧 / 𝑘𝐵𝑆)
4443r19.21bi 2585 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵𝑆)
4535, 36, 44syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵𝑆)
4634, 45sseldd 3184 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
4721, 22, 23, 24, 33, 46, 40fprodunsn 11769 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
4847adantr 276 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
49 simpr 110 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → 𝑦 = ∅)
5049prodeq1d 11729 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘𝑦 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
51 prod0 11750 . . . . . . . . . . . 12 𝑘 ∈ ∅ 𝐵 = 1
5250, 51eqtrdi 2245 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘𝑦 𝐵 = 1)
5352oveq1d 5937 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) = (1 · 𝑧 / 𝑘𝐵))
5446adantr 276 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5554mulid2d 8045 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (1 · 𝑧 / 𝑘𝐵) = 𝑧 / 𝑘𝐵)
5653, 55eqtrd 2229 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) = 𝑧 / 𝑘𝐵)
5745adantr 276 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → 𝑧 / 𝑘𝐵𝑆)
5856, 57eqeltrd 2273 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆)
5948, 58eqeltrd 2273 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)
6059olcd 735 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆))
6160ex 115 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 = ∅ → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
6247adantr 276 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
63 fprodcllem.2 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
6463ralrimivva 2579 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥 · 𝑦) ∈ 𝑆)
65 oveq1 5929 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
6665eleq1d 2265 . . . . . . . . . . . 12 (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝑆 ↔ (𝑢 · 𝑦) ∈ 𝑆))
67 oveq2 5930 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
6867eleq1d 2265 . . . . . . . . . . . 12 (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝑆 ↔ (𝑢 · 𝑣) ∈ 𝑆))
6966, 68cbvral2v 2742 . . . . . . . . . . 11 (∀𝑥𝑆𝑦𝑆 (𝑥 · 𝑦) ∈ 𝑆 ↔ ∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆)
7064, 69sylib 122 . . . . . . . . . 10 (𝜑 → ∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆)
7170ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆)
72 simpr 110 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∏𝑘𝑦 𝐵𝑆)
7345adantr 276 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → 𝑧 / 𝑘𝐵𝑆)
74 oveq1 5929 . . . . . . . . . . . 12 (𝑢 = ∏𝑘𝑦 𝐵 → (𝑢 · 𝑣) = (∏𝑘𝑦 𝐵 · 𝑣))
7574eleq1d 2265 . . . . . . . . . . 11 (𝑢 = ∏𝑘𝑦 𝐵 → ((𝑢 · 𝑣) ∈ 𝑆 ↔ (∏𝑘𝑦 𝐵 · 𝑣) ∈ 𝑆))
76 oveq2 5930 . . . . . . . . . . . 12 (𝑣 = 𝑧 / 𝑘𝐵 → (∏𝑘𝑦 𝐵 · 𝑣) = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7776eleq1d 2265 . . . . . . . . . . 11 (𝑣 = 𝑧 / 𝑘𝐵 → ((∏𝑘𝑦 𝐵 · 𝑣) ∈ 𝑆 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆))
7875, 77rspc2v 2881 . . . . . . . . . 10 ((∏𝑘𝑦 𝐵𝑆𝑧 / 𝑘𝐵𝑆) → (∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆 → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆))
7972, 73, 78syl2anc 411 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → (∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆 → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆))
8071, 79mpd 13 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆)
8162, 80eqeltrd 2273 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)
8281olcd 735 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆))
8382ex 115 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵𝑆 → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
8461, 83jaod 718 . . . 4 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((𝑦 = ∅ ∨ ∏𝑘𝑦 𝐵𝑆) → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
85 fprodcllem.3 . . . 4 (𝜑𝐴 ∈ Fin)
866, 10, 14, 18, 20, 84, 85findcard2sd 6953 . . 3 (𝜑 → (𝐴 = ∅ ∨ ∏𝑘𝐴 𝐵𝑆))
8786orcomd 730 . 2 (𝜑 → (∏𝑘𝐴 𝐵𝑆𝐴 = ∅))
882, 87ecased 1360 1 (𝜑 → ∏𝑘𝐴 𝐵𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167  wne 2367  wral 2475  csb 3084  cdif 3154  cun 3155  wss 3157  c0 3450  {csn 3622  (class class class)co 5922  Fincfn 6799  cc 7877  1c1 7880   · cmul 7884  cprod 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716
This theorem is referenced by:  fprodcllem  11771
  Copyright terms: Public domain W3C validator