ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodcl2lem GIF version

Theorem fprodcl2lem 11748
Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.)
Hypotheses
Ref Expression
fprodcllem.1 (𝜑𝑆 ⊆ ℂ)
fprodcllem.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
fprodcllem.3 (𝜑𝐴 ∈ Fin)
fprodcllem.4 ((𝜑𝑘𝐴) → 𝐵𝑆)
fprodcl2lem.5 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
fprodcl2lem (𝜑 → ∏𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑆,𝑘,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodcl2lem
Dummy variables 𝑤 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodcl2lem.5 . . 3 (𝜑𝐴 ≠ ∅)
21neneqd 2385 . 2 (𝜑 → ¬ 𝐴 = ∅)
3 eqeq1 2200 . . . . 5 (𝑤 = ∅ → (𝑤 = ∅ ↔ ∅ = ∅))
4 prodeq1 11696 . . . . . 6 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
54eleq1d 2262 . . . . 5 (𝑤 = ∅ → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘 ∈ ∅ 𝐵𝑆))
63, 5orbi12d 794 . . . 4 (𝑤 = ∅ → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ (∅ = ∅ ∨ ∏𝑘 ∈ ∅ 𝐵𝑆)))
7 eqeq1 2200 . . . . 5 (𝑤 = 𝑦 → (𝑤 = ∅ ↔ 𝑦 = ∅))
8 prodeq1 11696 . . . . . 6 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
98eleq1d 2262 . . . . 5 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘𝑦 𝐵𝑆))
107, 9orbi12d 794 . . . 4 (𝑤 = 𝑦 → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ (𝑦 = ∅ ∨ ∏𝑘𝑦 𝐵𝑆)))
11 eqeq1 2200 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 = ∅ ↔ (𝑦 ∪ {𝑧}) = ∅))
12 prodeq1 11696 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1312eleq1d 2262 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆))
1411, 13orbi12d 794 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
15 eqeq1 2200 . . . . 5 (𝑤 = 𝐴 → (𝑤 = ∅ ↔ 𝐴 = ∅))
16 prodeq1 11696 . . . . . 6 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
1716eleq1d 2262 . . . . 5 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘𝐴 𝐵𝑆))
1815, 17orbi12d 794 . . . 4 (𝑤 = 𝐴 → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ (𝐴 = ∅ ∨ ∏𝑘𝐴 𝐵𝑆)))
19 eqidd 2194 . . . . 5 (𝜑 → ∅ = ∅)
2019orcd 734 . . . 4 (𝜑 → (∅ = ∅ ∨ ∏𝑘 ∈ ∅ 𝐵𝑆))
21 nfcsb1v 3113 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵
22 simplr 528 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
23 simprr 531 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
2423eldifbd 3165 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
25 fprodcllem.1 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℂ)
2625ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑆 ⊆ ℂ)
27 simplll 533 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
28 simplrl 535 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
29 simpr 110 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
3028, 29sseldd 3180 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
31 fprodcllem.4 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵𝑆)
3227, 30, 31syl2anc 411 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵𝑆)
3326, 32sseldd 3180 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
3425ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑆 ⊆ ℂ)
35 simpll 527 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
3623eldifad 3164 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
3731ralrimiva 2567 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝐴 𝐵𝑆)
38 nfv 1539 . . . . . . . . . . . . . . 15 𝑧 𝐵𝑆
3921nfel1 2347 . . . . . . . . . . . . . . 15 𝑘𝑧 / 𝑘𝐵𝑆
40 csbeq1a 3089 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4140eleq1d 2262 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝐵𝑆𝑧 / 𝑘𝐵𝑆))
4238, 39, 41cbvral 2722 . . . . . . . . . . . . . 14 (∀𝑘𝐴 𝐵𝑆 ↔ ∀𝑧𝐴 𝑧 / 𝑘𝐵𝑆)
4337, 42sylib 122 . . . . . . . . . . . . 13 (𝜑 → ∀𝑧𝐴 𝑧 / 𝑘𝐵𝑆)
4443r19.21bi 2582 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵𝑆)
4535, 36, 44syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵𝑆)
4634, 45sseldd 3180 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
4721, 22, 23, 24, 33, 46, 40fprodunsn 11747 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
4847adantr 276 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
49 simpr 110 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → 𝑦 = ∅)
5049prodeq1d 11707 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘𝑦 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
51 prod0 11728 . . . . . . . . . . . 12 𝑘 ∈ ∅ 𝐵 = 1
5250, 51eqtrdi 2242 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘𝑦 𝐵 = 1)
5352oveq1d 5933 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) = (1 · 𝑧 / 𝑘𝐵))
5446adantr 276 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5554mulid2d 8038 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (1 · 𝑧 / 𝑘𝐵) = 𝑧 / 𝑘𝐵)
5653, 55eqtrd 2226 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) = 𝑧 / 𝑘𝐵)
5745adantr 276 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → 𝑧 / 𝑘𝐵𝑆)
5856, 57eqeltrd 2270 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆)
5948, 58eqeltrd 2270 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)
6059olcd 735 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆))
6160ex 115 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 = ∅ → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
6247adantr 276 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
63 fprodcllem.2 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
6463ralrimivva 2576 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥 · 𝑦) ∈ 𝑆)
65 oveq1 5925 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
6665eleq1d 2262 . . . . . . . . . . . 12 (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝑆 ↔ (𝑢 · 𝑦) ∈ 𝑆))
67 oveq2 5926 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
6867eleq1d 2262 . . . . . . . . . . . 12 (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝑆 ↔ (𝑢 · 𝑣) ∈ 𝑆))
6966, 68cbvral2v 2739 . . . . . . . . . . 11 (∀𝑥𝑆𝑦𝑆 (𝑥 · 𝑦) ∈ 𝑆 ↔ ∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆)
7064, 69sylib 122 . . . . . . . . . 10 (𝜑 → ∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆)
7170ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆)
72 simpr 110 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∏𝑘𝑦 𝐵𝑆)
7345adantr 276 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → 𝑧 / 𝑘𝐵𝑆)
74 oveq1 5925 . . . . . . . . . . . 12 (𝑢 = ∏𝑘𝑦 𝐵 → (𝑢 · 𝑣) = (∏𝑘𝑦 𝐵 · 𝑣))
7574eleq1d 2262 . . . . . . . . . . 11 (𝑢 = ∏𝑘𝑦 𝐵 → ((𝑢 · 𝑣) ∈ 𝑆 ↔ (∏𝑘𝑦 𝐵 · 𝑣) ∈ 𝑆))
76 oveq2 5926 . . . . . . . . . . . 12 (𝑣 = 𝑧 / 𝑘𝐵 → (∏𝑘𝑦 𝐵 · 𝑣) = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7776eleq1d 2262 . . . . . . . . . . 11 (𝑣 = 𝑧 / 𝑘𝐵 → ((∏𝑘𝑦 𝐵 · 𝑣) ∈ 𝑆 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆))
7875, 77rspc2v 2877 . . . . . . . . . 10 ((∏𝑘𝑦 𝐵𝑆𝑧 / 𝑘𝐵𝑆) → (∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆 → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆))
7972, 73, 78syl2anc 411 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → (∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆 → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆))
8071, 79mpd 13 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆)
8162, 80eqeltrd 2270 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)
8281olcd 735 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆))
8382ex 115 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵𝑆 → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
8461, 83jaod 718 . . . 4 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((𝑦 = ∅ ∨ ∏𝑘𝑦 𝐵𝑆) → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
85 fprodcllem.3 . . . 4 (𝜑𝐴 ∈ Fin)
866, 10, 14, 18, 20, 84, 85findcard2sd 6948 . . 3 (𝜑 → (𝐴 = ∅ ∨ ∏𝑘𝐴 𝐵𝑆))
8786orcomd 730 . 2 (𝜑 → (∏𝑘𝐴 𝐵𝑆𝐴 = ∅))
882, 87ecased 1360 1 (𝜑 → ∏𝑘𝐴 𝐵𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2164  wne 2364  wral 2472  csb 3080  cdif 3150  cun 3151  wss 3153  c0 3446  {csn 3618  (class class class)co 5918  Fincfn 6794  cc 7870  1c1 7873   · cmul 7877  cprod 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694
This theorem is referenced by:  fprodcllem  11749
  Copyright terms: Public domain W3C validator