ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodcl2lem GIF version

Theorem fprodcl2lem 11568
Description: Finite product closure lemma. (Contributed by Scott Fenton, 14-Dec-2017.) (Revised by Jim Kingdon, 17-Aug-2024.)
Hypotheses
Ref Expression
fprodcllem.1 (𝜑𝑆 ⊆ ℂ)
fprodcllem.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
fprodcllem.3 (𝜑𝐴 ∈ Fin)
fprodcllem.4 ((𝜑𝑘𝐴) → 𝐵𝑆)
fprodcl2lem.5 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
fprodcl2lem (𝜑 → ∏𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑆,𝑘,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fprodcl2lem
Dummy variables 𝑤 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodcl2lem.5 . . 3 (𝜑𝐴 ≠ ∅)
21neneqd 2361 . 2 (𝜑 → ¬ 𝐴 = ∅)
3 eqeq1 2177 . . . . 5 (𝑤 = ∅ → (𝑤 = ∅ ↔ ∅ = ∅))
4 prodeq1 11516 . . . . . 6 (𝑤 = ∅ → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
54eleq1d 2239 . . . . 5 (𝑤 = ∅ → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘 ∈ ∅ 𝐵𝑆))
63, 5orbi12d 788 . . . 4 (𝑤 = ∅ → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ (∅ = ∅ ∨ ∏𝑘 ∈ ∅ 𝐵𝑆)))
7 eqeq1 2177 . . . . 5 (𝑤 = 𝑦 → (𝑤 = ∅ ↔ 𝑦 = ∅))
8 prodeq1 11516 . . . . . 6 (𝑤 = 𝑦 → ∏𝑘𝑤 𝐵 = ∏𝑘𝑦 𝐵)
98eleq1d 2239 . . . . 5 (𝑤 = 𝑦 → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘𝑦 𝐵𝑆))
107, 9orbi12d 788 . . . 4 (𝑤 = 𝑦 → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ (𝑦 = ∅ ∨ ∏𝑘𝑦 𝐵𝑆)))
11 eqeq1 2177 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 = ∅ ↔ (𝑦 ∪ {𝑧}) = ∅))
12 prodeq1 11516 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ∏𝑘𝑤 𝐵 = ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1312eleq1d 2239 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆))
1411, 13orbi12d 788 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
15 eqeq1 2177 . . . . 5 (𝑤 = 𝐴 → (𝑤 = ∅ ↔ 𝐴 = ∅))
16 prodeq1 11516 . . . . . 6 (𝑤 = 𝐴 → ∏𝑘𝑤 𝐵 = ∏𝑘𝐴 𝐵)
1716eleq1d 2239 . . . . 5 (𝑤 = 𝐴 → (∏𝑘𝑤 𝐵𝑆 ↔ ∏𝑘𝐴 𝐵𝑆))
1815, 17orbi12d 788 . . . 4 (𝑤 = 𝐴 → ((𝑤 = ∅ ∨ ∏𝑘𝑤 𝐵𝑆) ↔ (𝐴 = ∅ ∨ ∏𝑘𝐴 𝐵𝑆)))
19 eqidd 2171 . . . . 5 (𝜑 → ∅ = ∅)
2019orcd 728 . . . 4 (𝜑 → (∅ = ∅ ∨ ∏𝑘 ∈ ∅ 𝐵𝑆))
21 nfcsb1v 3082 . . . . . . . . . 10 𝑘𝑧 / 𝑘𝐵
22 simplr 525 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑦 ∈ Fin)
23 simprr 527 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
2423eldifbd 3133 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ¬ 𝑧𝑦)
25 fprodcllem.1 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℂ)
2625ad3antrrr 489 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑆 ⊆ ℂ)
27 simplll 528 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝜑)
28 simplrl 530 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑦𝐴)
29 simpr 109 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝑦)
3028, 29sseldd 3148 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝑘𝐴)
31 fprodcllem.4 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵𝑆)
3227, 30, 31syl2anc 409 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵𝑆)
3326, 32sseldd 3148 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑘𝑦) → 𝐵 ∈ ℂ)
3425ad2antrr 485 . . . . . . . . . . 11 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑆 ⊆ ℂ)
35 simpll 524 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝜑)
3623eldifad 3132 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
3731ralrimiva 2543 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑘𝐴 𝐵𝑆)
38 nfv 1521 . . . . . . . . . . . . . . 15 𝑧 𝐵𝑆
3921nfel1 2323 . . . . . . . . . . . . . . 15 𝑘𝑧 / 𝑘𝐵𝑆
40 csbeq1a 3058 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
4140eleq1d 2239 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝐵𝑆𝑧 / 𝑘𝐵𝑆))
4238, 39, 41cbvral 2692 . . . . . . . . . . . . . 14 (∀𝑘𝐴 𝐵𝑆 ↔ ∀𝑧𝐴 𝑧 / 𝑘𝐵𝑆)
4337, 42sylib 121 . . . . . . . . . . . . 13 (𝜑 → ∀𝑧𝐴 𝑧 / 𝑘𝐵𝑆)
4443r19.21bi 2558 . . . . . . . . . . . 12 ((𝜑𝑧𝐴) → 𝑧 / 𝑘𝐵𝑆)
4535, 36, 44syl2anc 409 . . . . . . . . . . 11 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵𝑆)
4634, 45sseldd 3148 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 / 𝑘𝐵 ∈ ℂ)
4721, 22, 23, 24, 33, 46, 40fprodunsn 11567 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
4847adantr 274 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
49 simpr 109 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → 𝑦 = ∅)
5049prodeq1d 11527 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘𝑦 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
51 prod0 11548 . . . . . . . . . . . 12 𝑘 ∈ ∅ 𝐵 = 1
5250, 51eqtrdi 2219 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘𝑦 𝐵 = 1)
5352oveq1d 5868 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) = (1 · 𝑧 / 𝑘𝐵))
5446adantr 274 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → 𝑧 / 𝑘𝐵 ∈ ℂ)
5554mulid2d 7938 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (1 · 𝑧 / 𝑘𝐵) = 𝑧 / 𝑘𝐵)
5653, 55eqtrd 2203 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) = 𝑧 / 𝑘𝐵)
5745adantr 274 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → 𝑧 / 𝑘𝐵𝑆)
5856, 57eqeltrd 2247 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆)
5948, 58eqeltrd 2247 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)
6059olcd 729 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑦 = ∅) → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆))
6160ex 114 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑦 = ∅ → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
6247adantr 274 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
63 fprodcllem.2 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
6463ralrimivva 2552 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥 · 𝑦) ∈ 𝑆)
65 oveq1 5860 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
6665eleq1d 2239 . . . . . . . . . . . 12 (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝑆 ↔ (𝑢 · 𝑦) ∈ 𝑆))
67 oveq2 5861 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
6867eleq1d 2239 . . . . . . . . . . . 12 (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝑆 ↔ (𝑢 · 𝑣) ∈ 𝑆))
6966, 68cbvral2v 2709 . . . . . . . . . . 11 (∀𝑥𝑆𝑦𝑆 (𝑥 · 𝑦) ∈ 𝑆 ↔ ∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆)
7064, 69sylib 121 . . . . . . . . . 10 (𝜑 → ∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆)
7170ad3antrrr 489 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆)
72 simpr 109 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∏𝑘𝑦 𝐵𝑆)
7345adantr 274 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → 𝑧 / 𝑘𝐵𝑆)
74 oveq1 5860 . . . . . . . . . . . 12 (𝑢 = ∏𝑘𝑦 𝐵 → (𝑢 · 𝑣) = (∏𝑘𝑦 𝐵 · 𝑣))
7574eleq1d 2239 . . . . . . . . . . 11 (𝑢 = ∏𝑘𝑦 𝐵 → ((𝑢 · 𝑣) ∈ 𝑆 ↔ (∏𝑘𝑦 𝐵 · 𝑣) ∈ 𝑆))
76 oveq2 5861 . . . . . . . . . . . 12 (𝑣 = 𝑧 / 𝑘𝐵 → (∏𝑘𝑦 𝐵 · 𝑣) = (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵))
7776eleq1d 2239 . . . . . . . . . . 11 (𝑣 = 𝑧 / 𝑘𝐵 → ((∏𝑘𝑦 𝐵 · 𝑣) ∈ 𝑆 ↔ (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆))
7875, 77rspc2v 2847 . . . . . . . . . 10 ((∏𝑘𝑦 𝐵𝑆𝑧 / 𝑘𝐵𝑆) → (∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆 → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆))
7972, 73, 78syl2anc 409 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → (∀𝑢𝑆𝑣𝑆 (𝑢 · 𝑣) ∈ 𝑆 → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆))
8071, 79mpd 13 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → (∏𝑘𝑦 𝐵 · 𝑧 / 𝑘𝐵) ∈ 𝑆)
8162, 80eqeltrd 2247 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)
8281olcd 729 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ ∏𝑘𝑦 𝐵𝑆) → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆))
8382ex 114 . . . . 5 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (∏𝑘𝑦 𝐵𝑆 → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
8461, 83jaod 712 . . . 4 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((𝑦 = ∅ ∨ ∏𝑘𝑦 𝐵𝑆) → ((𝑦 ∪ {𝑧}) = ∅ ∨ ∏𝑘 ∈ (𝑦 ∪ {𝑧})𝐵𝑆)))
85 fprodcllem.3 . . . 4 (𝜑𝐴 ∈ Fin)
866, 10, 14, 18, 20, 84, 85findcard2sd 6870 . . 3 (𝜑 → (𝐴 = ∅ ∨ ∏𝑘𝐴 𝐵𝑆))
8786orcomd 724 . 2 (𝜑 → (∏𝑘𝐴 𝐵𝑆𝐴 = ∅))
882, 87ecased 1344 1 (𝜑 → ∏𝑘𝐴 𝐵𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703   = wceq 1348  wcel 2141  wne 2340  wral 2448  csb 3049  cdif 3118  cun 3119  wss 3121  c0 3414  {csn 3583  (class class class)co 5853  Fincfn 6718  cc 7772  1c1 7775   · cmul 7779  cprod 11513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514
This theorem is referenced by:  fprodcllem  11569
  Copyright terms: Public domain W3C validator