ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdmndc GIF version

Theorem gcdmndc 11877
Description: Decidablity lemma used in various proofs related to gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
Assertion
Ref Expression
gcdmndc ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))

Proof of Theorem gcdmndc
StepHypRef Expression
1 0z 9202 . . . 4 0 ∈ ℤ
2 zdceq 9266 . . . 4 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
31, 2mpan2 422 . . 3 (𝑀 ∈ ℤ → DECID 𝑀 = 0)
43adantr 274 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑀 = 0)
5 zdceq 9266 . . . 4 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
61, 5mpan2 422 . . 3 (𝑁 ∈ ℤ → DECID 𝑁 = 0)
76adantl 275 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0)
8 dcan2 924 . 2 (DECID 𝑀 = 0 → (DECID 𝑁 = 0 → DECID (𝑀 = 0 ∧ 𝑁 = 0)))
94, 7, 8sylc 62 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 824   = wceq 1343  wcel 2136  0cc0 7753  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192
This theorem is referenced by:  gcdval  11892  gcddvds  11896  gcdcl  11899  gcdeq0  11910  gcdneg  11915  dfgcd3  11943  dfgcd2  11947  rpexp  12085
  Copyright terms: Public domain W3C validator