| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsneg1 | GIF version | ||
| Description: The Legendre symbol for nonnegative first parameter is unchanged by negation of the second. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgsneg1 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg0 8353 | . . . 4 ⊢ -0 = 0 | |
| 2 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝑁 = 0) | |
| 3 | 2 | negeqd 8302 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → -𝑁 = -0) |
| 4 | 1, 3, 2 | 3eqtr4a 2266 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → -𝑁 = 𝑁) |
| 5 | 4 | oveq2d 5983 | . 2 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
| 6 | nn0z 9427 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
| 7 | lgsneg 15616 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁))) | |
| 8 | 6, 7 | syl3an1 1283 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁))) |
| 9 | nn0nlt0 9356 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → ¬ 𝐴 < 0) | |
| 10 | 9 | 3ad2ant1 1021 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ¬ 𝐴 < 0) |
| 11 | 10 | iffalsed 3589 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if(𝐴 < 0, -1, 1) = 1) |
| 12 | 11 | oveq1d 5982 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)) = (1 · (𝐴 /L 𝑁))) |
| 13 | 6 | 3ad2ant1 1021 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ) |
| 14 | simp2 1001 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ) | |
| 15 | lgscl 15606 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ) | |
| 16 | 13, 14, 15 | syl2anc 411 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) ∈ ℤ) |
| 17 | 16 | zcnd 9531 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) ∈ ℂ) |
| 18 | 17 | mulid2d 8126 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (1 · (𝐴 /L 𝑁)) = (𝐴 /L 𝑁)) |
| 19 | 8, 12, 18 | 3eqtrd 2244 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
| 20 | 19 | 3expa 1206 | . 2 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
| 21 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 22 | 0zd 9419 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → 0 ∈ ℤ) | |
| 23 | zdceq 9483 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
| 24 | 21, 22, 23 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0) |
| 25 | dcne 2389 | . . 3 ⊢ (DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ 𝑁 ≠ 0)) | |
| 26 | 24, 25 | sylib 122 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ 𝑁 ≠ 0)) |
| 27 | 5, 20, 26 | mpjaodan 800 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 ifcif 3579 class class class wbr 4059 (class class class)co 5967 0cc0 7960 1c1 7961 · cmul 7965 < clt 8142 -cneg 8279 ℕ0cn0 9330 ℤcz 9407 /L clgs 15589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-2o 6526 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-proddc 11977 df-dvds 12214 df-gcd 12390 df-prm 12545 df-phi 12648 df-pc 12723 df-lgs 15590 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |