Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lgsneg1 | GIF version |
Description: The Legendre symbol for nonnegative first parameter is unchanged by negation of the second. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
lgsneg1 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg0 8177 | . . . 4 ⊢ -0 = 0 | |
2 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝑁 = 0) | |
3 | 2 | negeqd 8126 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → -𝑁 = -0) |
4 | 1, 3, 2 | 3eqtr4a 2234 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → -𝑁 = 𝑁) |
5 | 4 | oveq2d 5881 | . 2 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
6 | nn0z 9246 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
7 | lgsneg 13996 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁))) | |
8 | 6, 7 | syl3an1 1271 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁))) |
9 | nn0nlt0 9175 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → ¬ 𝐴 < 0) | |
10 | 9 | 3ad2ant1 1018 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ¬ 𝐴 < 0) |
11 | 10 | iffalsed 3542 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if(𝐴 < 0, -1, 1) = 1) |
12 | 11 | oveq1d 5880 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)) = (1 · (𝐴 /L 𝑁))) |
13 | 6 | 3ad2ant1 1018 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ) |
14 | simp2 998 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ) | |
15 | lgscl 13986 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ) | |
16 | 13, 14, 15 | syl2anc 411 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) ∈ ℤ) |
17 | 16 | zcnd 9349 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) ∈ ℂ) |
18 | 17 | mulid2d 7950 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (1 · (𝐴 /L 𝑁)) = (𝐴 /L 𝑁)) |
19 | 8, 12, 18 | 3eqtrd 2212 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
20 | 19 | 3expa 1203 | . 2 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
21 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
22 | 0zd 9238 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → 0 ∈ ℤ) | |
23 | zdceq 9301 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
24 | 21, 22, 23 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0) |
25 | dcne 2356 | . . 3 ⊢ (DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ 𝑁 ≠ 0)) | |
26 | 24, 25 | sylib 122 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ 𝑁 ≠ 0)) |
27 | 5, 20, 26 | mpjaodan 798 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 DECID wdc 834 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 ≠ wne 2345 ifcif 3532 class class class wbr 3998 (class class class)co 5865 0cc0 7786 1c1 7787 · cmul 7791 < clt 7966 -cneg 8103 ℕ0cn0 9149 ℤcz 9226 /L clgs 13969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-xor 1376 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-isom 5217 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-frec 6382 df-1o 6407 df-2o 6408 df-oadd 6411 df-er 6525 df-en 6731 df-dom 6732 df-fin 6733 df-sup 6973 df-inf 6974 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-5 8954 df-6 8955 df-7 8956 df-8 8957 df-n0 9150 df-z 9227 df-uz 9502 df-q 9593 df-rp 9625 df-fz 9980 df-fzo 10113 df-fl 10240 df-mod 10293 df-seqfrec 10416 df-exp 10490 df-ihash 10724 df-cj 10819 df-re 10820 df-im 10821 df-rsqrt 10975 df-abs 10976 df-clim 11255 df-proddc 11527 df-dvds 11763 df-gcd 11911 df-prm 12075 df-phi 12178 df-pc 12252 df-lgs 13970 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |