![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lgsneg1 | GIF version |
Description: The Legendre symbol for nonnegative first parameter is unchanged by negation of the second. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
lgsneg1 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg0 8265 | . . . 4 ⊢ -0 = 0 | |
2 | simpr 110 | . . . . 5 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → 𝑁 = 0) | |
3 | 2 | negeqd 8214 | . . . 4 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → -𝑁 = -0) |
4 | 1, 3, 2 | 3eqtr4a 2252 | . . 3 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → -𝑁 = 𝑁) |
5 | 4 | oveq2d 5934 | . 2 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
6 | nn0z 9337 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
7 | lgsneg 15140 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁))) | |
8 | 6, 7 | syl3an1 1282 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁))) |
9 | nn0nlt0 9266 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ0 → ¬ 𝐴 < 0) | |
10 | 9 | 3ad2ant1 1020 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ¬ 𝐴 < 0) |
11 | 10 | iffalsed 3567 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if(𝐴 < 0, -1, 1) = 1) |
12 | 11 | oveq1d 5933 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (if(𝐴 < 0, -1, 1) · (𝐴 /L 𝑁)) = (1 · (𝐴 /L 𝑁))) |
13 | 6 | 3ad2ant1 1020 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ) |
14 | simp2 1000 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ) | |
15 | lgscl 15130 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) ∈ ℤ) | |
16 | 13, 14, 15 | syl2anc 411 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) ∈ ℤ) |
17 | 16 | zcnd 9440 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L 𝑁) ∈ ℂ) |
18 | 17 | mulid2d 8038 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (1 · (𝐴 /L 𝑁)) = (𝐴 /L 𝑁)) |
19 | 8, 12, 18 | 3eqtrd 2230 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
20 | 19 | 3expa 1205 | . 2 ⊢ (((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ≠ 0) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
21 | simpr 110 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
22 | 0zd 9329 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → 0 ∈ ℤ) | |
23 | zdceq 9392 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0) | |
24 | 21, 22, 23 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → DECID 𝑁 = 0) |
25 | dcne 2375 | . . 3 ⊢ (DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ 𝑁 ≠ 0)) | |
26 | 24, 25 | sylib 122 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ∨ 𝑁 ≠ 0)) |
27 | 5, 20, 26 | mpjaodan 799 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℤ) → (𝐴 /L -𝑁) = (𝐴 /L 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ifcif 3557 class class class wbr 4029 (class class class)co 5918 0cc0 7872 1c1 7873 · cmul 7877 < clt 8054 -cneg 8191 ℕ0cn0 9240 ℤcz 9317 /L clgs 15113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-2o 6470 df-oadd 6473 df-er 6587 df-en 6795 df-dom 6796 df-fin 6797 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fz 10075 df-fzo 10209 df-fl 10339 df-mod 10394 df-seqfrec 10519 df-exp 10610 df-ihash 10847 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-proddc 11694 df-dvds 11931 df-gcd 12080 df-prm 12246 df-phi 12349 df-pc 12423 df-lgs 15114 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |