ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdirprm GIF version

Theorem lgsdirprm 15150
Description: The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
lgsdirprm ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))

Proof of Theorem lgsdirprm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1002 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝐴 ∈ ℤ)
2 simpl2 1003 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝐵 ∈ ℤ)
3 lgsdir2 15149 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
41, 2, 3syl2anc 411 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
5 simpr 110 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝑃 = 2)
65oveq2d 5934 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 · 𝐵) /L 2))
75oveq2d 5934 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → (𝐴 /L 𝑃) = (𝐴 /L 2))
85oveq2d 5934 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → (𝐵 /L 𝑃) = (𝐵 /L 2))
97, 8oveq12d 5936 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) = ((𝐴 /L 2) · (𝐵 /L 2)))
104, 6, 93eqtr4d 2236 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
11 simpl1 1002 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐴 ∈ ℤ)
12 simpl2 1003 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐵 ∈ ℤ)
1311, 12zmulcld 9445 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 · 𝐵) ∈ ℤ)
14 simpl3 1004 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℙ)
15 prmz 12249 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1614, 15syl 14 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℤ)
17 lgscl 15130 . . . . 5 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ)
1813, 16, 17syl2anc 411 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ)
1918zcnd 9440 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℂ)
20 lgscl 15130 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ ℤ)
2111, 16, 20syl2anc 411 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ ℤ)
22 lgscl 15130 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐵 /L 𝑃) ∈ ℤ)
2312, 16, 22syl2anc 411 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℤ)
2421, 23zmulcld 9445 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ)
2524zcnd 9440 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℂ)
2619, 25subcld 8330 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℂ)
2718, 24zsubcld 9444 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℤ)
28 zabscl 11230 . . . . . . 7 ((((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℤ → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℤ)
29 zq 9691 . . . . . . 7 ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℤ → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℚ)
3027, 28, 293syl 17 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℚ)
31 prmnn 12248 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
32 nnq 9698 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
3314, 31, 323syl 17 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℚ)
3426absge0d 11328 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 0 ≤ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
3526abscld 11325 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℝ)
36 2re 9052 . . . . . . . 8 2 ∈ ℝ
3736a1i 9 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 ∈ ℝ)
3814, 31syl 14 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℕ)
3938nnred 8995 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℝ)
4019abscld 11325 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ∈ ℝ)
4125abscld 11325 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℝ)
4240, 41readdcld 8049 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℝ)
4319, 25abs2dif2d 11342 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
44 1red 8034 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 1 ∈ ℝ)
45 lgsle1 15131 . . . . . . . . . . 11 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ ℤ) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ≤ 1)
4613, 16, 45syl2anc 411 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ≤ 1)
47 eqid 2193 . . . . . . . . . . . . . 14 {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
4847lgscl2 15128 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4911, 16, 48syl2anc 411 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
5047lgscl2 15128 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
5112, 16, 50syl2anc 411 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
5247lgslem3 15118 . . . . . . . . . . . 12 (((𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ∧ (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
5349, 51, 52syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
54 fveq2 5554 . . . . . . . . . . . . . 14 (𝑥 = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) → (abs‘𝑥) = (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))
5554breq1d 4039 . . . . . . . . . . . . 13 (𝑥 = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) → ((abs‘𝑥) ≤ 1 ↔ (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1))
5655elrab 2916 . . . . . . . . . . . 12 (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ↔ (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ ∧ (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1))
5756simprbi 275 . . . . . . . . . . 11 (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1)
5853, 57syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1)
5940, 41, 44, 44, 46, 58le2addd 8582 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ (1 + 1))
60 df-2 9041 . . . . . . . . 9 2 = (1 + 1)
6159, 60breqtrrdi 4071 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ 2)
6235, 42, 37, 43, 61letrd 8143 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ 2)
63 prmuz2 12269 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
64 eluzle 9604 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
6514, 63, 643syl 17 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 ≤ 𝑃)
66 simpr 110 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
67 2z 9345 . . . . . . . . 9 2 ∈ ℤ
68 zltlen 9395 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (2 < 𝑃 ↔ (2 ≤ 𝑃𝑃 ≠ 2)))
6967, 16, 68sylancr 414 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (2 < 𝑃 ↔ (2 ≤ 𝑃𝑃 ≠ 2)))
7065, 66, 69mpbir2and 946 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 < 𝑃)
7135, 37, 39, 62, 70lelttrd 8144 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) < 𝑃)
72 modqid 10420 . . . . . 6 ((((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∧ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) < 𝑃)) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
7330, 33, 34, 71, 72syl22anc 1250 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
7411zcnd 9440 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐴 ∈ ℂ)
7512zcnd 9440 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐵 ∈ ℂ)
76 eldifsn 3745 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
7714, 66, 76sylanbrc 417 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ (ℙ ∖ {2}))
78 oddprm 12397 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
7977, 78syl 14 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝑃 − 1) / 2) ∈ ℕ)
8079nnnn0d 9293 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝑃 − 1) / 2) ∈ ℕ0)
8174, 75, 80mulexpd 10759 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) = ((𝐴↑((𝑃 − 1) / 2)) · (𝐵↑((𝑃 − 1) / 2))))
82 zexpcl 10625 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
8311, 80, 82syl2anc 411 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
8483zcnd 9440 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℂ)
85 zexpcl 10625 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℤ)
8612, 80, 85syl2anc 411 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℤ)
8786zcnd 9440 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℂ)
8884, 87mulcomd 8041 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴↑((𝑃 − 1) / 2)) · (𝐵↑((𝑃 − 1) / 2))) = ((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))))
8981, 88eqtrd 2226 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) = ((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))))
9089oveq1d 5933 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
91 lgsvalmod 15135 . . . . . . . . . 10 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃))
9213, 77, 91syl2anc 411 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃))
93 zq 9691 . . . . . . . . . . . 12 ((𝐴 /L 𝑃) ∈ ℤ → (𝐴 /L 𝑃) ∈ ℚ)
9421, 93syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ ℚ)
95 zq 9691 . . . . . . . . . . . 12 ((𝐴↑((𝑃 − 1) / 2)) ∈ ℤ → (𝐴↑((𝑃 − 1) / 2)) ∈ ℚ)
9683, 95syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℚ)
9738nngt0d 9026 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 0 < 𝑃)
98 lgsvalmod 15135 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
9911, 77, 98syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
10094, 96, 23, 33, 97, 99modqmul1 10448 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) mod 𝑃))
10123zcnd 9440 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℂ)
10284, 101mulcomd 8041 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) = ((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))))
103102oveq1d 5933 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
104 zq 9691 . . . . . . . . . . . 12 ((𝐵 /L 𝑃) ∈ ℤ → (𝐵 /L 𝑃) ∈ ℚ)
10523, 104syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℚ)
106 zq 9691 . . . . . . . . . . . 12 ((𝐵↑((𝑃 − 1) / 2)) ∈ ℤ → (𝐵↑((𝑃 − 1) / 2)) ∈ ℚ)
10786, 106syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℚ)
108 lgsvalmod 15135 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐵 /L 𝑃) mod 𝑃) = ((𝐵↑((𝑃 − 1) / 2)) mod 𝑃))
10912, 77, 108syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐵 /L 𝑃) mod 𝑃) = ((𝐵↑((𝑃 − 1) / 2)) mod 𝑃))
110105, 107, 83, 33, 97, 109modqmul1 10448 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
111100, 103, 1103eqtrd 2230 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
11290, 92, 1113eqtr4d 2236 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃))
113 moddvds 11942 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ ∧ ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ) → ((((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) ↔ 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
11438, 18, 24, 113syl3anc 1249 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) ↔ 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
115112, 114mpbid 147 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))
116 dvdsabsb 11953 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℤ) → (𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ↔ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))))
11716, 27, 116syl2anc 411 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ↔ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))))
118115, 117mpbid 147 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
119 dvdsmod0 11936 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = 0)
12038, 118, 119syl2anc 411 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = 0)
12173, 120eqtr3d 2228 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) = 0)
12226, 121abs00d 11330 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) = 0)
12319, 25, 122subeq0d 8338 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
124153ad2ant3 1022 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℤ)
12567a1i 9 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → 2 ∈ ℤ)
126 zdceq 9392 . . . 4 ((𝑃 ∈ ℤ ∧ 2 ∈ ℤ) → DECID 𝑃 = 2)
127124, 125, 126syl2anc 411 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → DECID 𝑃 = 2)
128 dcne 2375 . . 3 (DECID 𝑃 = 2 ↔ (𝑃 = 2 ∨ 𝑃 ≠ 2))
129127, 128sylib 122 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 = 2 ∨ 𝑃 ≠ 2))
13010, 123, 129mpjaodan 799 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  wne 2364  {crab 2476  cdif 3150  {csn 3618   class class class wbr 4029  cfv 5254  (class class class)co 5918  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  cle 8055  cmin 8190   / cdiv 8691  cn 8982  2c2 9033  0cn0 9240  cz 9317  cuz 9592  cq 9684   mod cmo 10393  cexp 10609  abscabs 11141  cdvds 11930  cprime 12245   /L clgs 15113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694  df-dvds 11931  df-gcd 12080  df-prm 12246  df-phi 12349  df-pc 12423  df-lgs 15114
This theorem is referenced by:  lgsdir  15151
  Copyright terms: Public domain W3C validator