ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdirprm GIF version

Theorem lgsdirprm 15555
Description: The Legendre symbol is completely multiplicative at the primes. See theorem 9.3 in [ApostolNT] p. 180. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
lgsdirprm ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))

Proof of Theorem lgsdirprm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1003 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝐴 ∈ ℤ)
2 simpl2 1004 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝐵 ∈ ℤ)
3 lgsdir2 15554 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
41, 2, 3syl2anc 411 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 2) = ((𝐴 /L 2) · (𝐵 /L 2)))
5 simpr 110 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → 𝑃 = 2)
65oveq2d 5967 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 · 𝐵) /L 2))
75oveq2d 5967 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → (𝐴 /L 𝑃) = (𝐴 /L 2))
85oveq2d 5967 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → (𝐵 /L 𝑃) = (𝐵 /L 2))
97, 8oveq12d 5969 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) = ((𝐴 /L 2) · (𝐵 /L 2)))
104, 6, 93eqtr4d 2249 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 = 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
11 simpl1 1003 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐴 ∈ ℤ)
12 simpl2 1004 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐵 ∈ ℤ)
1311, 12zmulcld 9508 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 · 𝐵) ∈ ℤ)
14 simpl3 1005 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℙ)
15 prmz 12477 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1614, 15syl 14 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℤ)
17 lgscl 15535 . . . . 5 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ)
1813, 16, 17syl2anc 411 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ)
1918zcnd 9503 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) ∈ ℂ)
20 lgscl 15535 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ ℤ)
2111, 16, 20syl2anc 411 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ ℤ)
22 lgscl 15535 . . . . . 6 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐵 /L 𝑃) ∈ ℤ)
2312, 16, 22syl2anc 411 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℤ)
2421, 23zmulcld 9508 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ)
2524zcnd 9503 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℂ)
2619, 25subcld 8390 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℂ)
2718, 24zsubcld 9507 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℤ)
28 zabscl 11441 . . . . . . 7 ((((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℤ → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℤ)
29 zq 9754 . . . . . . 7 ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℤ → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℚ)
3027, 28, 293syl 17 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℚ)
31 prmnn 12476 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
32 nnq 9761 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
3314, 31, 323syl 17 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℚ)
3426absge0d 11539 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 0 ≤ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
3526abscld 11536 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℝ)
36 2re 9113 . . . . . . . 8 2 ∈ ℝ
3736a1i 9 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 ∈ ℝ)
3814, 31syl 14 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℕ)
3938nnred 9056 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ ℝ)
4019abscld 11536 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ∈ ℝ)
4125abscld 11536 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℝ)
4240, 41readdcld 8109 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℝ)
4319, 25abs2dif2d 11553 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
44 1red 8094 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 1 ∈ ℝ)
45 lgsle1 15536 . . . . . . . . . . 11 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ ℤ) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ≤ 1)
4613, 16, 45syl2anc 411 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 · 𝐵) /L 𝑃)) ≤ 1)
47 eqid 2206 . . . . . . . . . . . . . 14 {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
4847lgscl2 15533 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
4911, 16, 48syl2anc 411 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
5047lgscl2 15533 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
5112, 16, 50syl2anc 411 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
5247lgslem3 15523 . . . . . . . . . . . 12 (((𝐴 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ∧ (𝐵 /L 𝑃) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
5349, 51, 52syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1})
54 fveq2 5583 . . . . . . . . . . . . . 14 (𝑥 = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) → (abs‘𝑥) = (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))
5554breq1d 4057 . . . . . . . . . . . . 13 (𝑥 = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) → ((abs‘𝑥) ≤ 1 ↔ (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1))
5655elrab 2930 . . . . . . . . . . . 12 (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ↔ (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ ∧ (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1))
5756simprbi 275 . . . . . . . . . . 11 (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1)
5853, 57syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ≤ 1)
5940, 41, 44, 44, 46, 58le2addd 8643 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ (1 + 1))
60 df-2 9102 . . . . . . . . 9 2 = (1 + 1)
6159, 60breqtrrdi 4089 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘((𝐴 · 𝐵) /L 𝑃)) + (abs‘((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ 2)
6235, 42, 37, 43, 61letrd 8203 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ≤ 2)
63 prmuz2 12497 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
64 eluzle 9667 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → 2 ≤ 𝑃)
6514, 63, 643syl 17 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 ≤ 𝑃)
66 simpr 110 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ≠ 2)
67 2z 9407 . . . . . . . . 9 2 ∈ ℤ
68 zltlen 9458 . . . . . . . . 9 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (2 < 𝑃 ↔ (2 ≤ 𝑃𝑃 ≠ 2)))
6967, 16, 68sylancr 414 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (2 < 𝑃 ↔ (2 ≤ 𝑃𝑃 ≠ 2)))
7065, 66, 69mpbir2and 947 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 2 < 𝑃)
7135, 37, 39, 62, 70lelttrd 8204 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) < 𝑃)
72 modqid 10501 . . . . . 6 ((((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) ∧ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) < 𝑃)) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
7330, 33, 34, 71, 72syl22anc 1251 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
7411zcnd 9503 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐴 ∈ ℂ)
7512zcnd 9503 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝐵 ∈ ℂ)
76 eldifsn 3762 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
7714, 66, 76sylanbrc 417 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∈ (ℙ ∖ {2}))
78 oddprm 12626 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
7977, 78syl 14 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝑃 − 1) / 2) ∈ ℕ)
8079nnnn0d 9355 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝑃 − 1) / 2) ∈ ℕ0)
8174, 75, 80mulexpd 10840 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) = ((𝐴↑((𝑃 − 1) / 2)) · (𝐵↑((𝑃 − 1) / 2))))
82 zexpcl 10706 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
8311, 80, 82syl2anc 411 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
8483zcnd 9503 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℂ)
85 zexpcl 10706 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℤ)
8612, 80, 85syl2anc 411 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℤ)
8786zcnd 9503 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℂ)
8884, 87mulcomd 8101 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴↑((𝑃 − 1) / 2)) · (𝐵↑((𝑃 − 1) / 2))) = ((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))))
8981, 88eqtrd 2239 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) = ((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))))
9089oveq1d 5966 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
91 lgsvalmod 15540 . . . . . . . . . 10 (((𝐴 · 𝐵) ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃))
9213, 77, 91syl2anc 411 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 · 𝐵)↑((𝑃 − 1) / 2)) mod 𝑃))
93 zq 9754 . . . . . . . . . . . 12 ((𝐴 /L 𝑃) ∈ ℤ → (𝐴 /L 𝑃) ∈ ℚ)
9421, 93syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴 /L 𝑃) ∈ ℚ)
95 zq 9754 . . . . . . . . . . . 12 ((𝐴↑((𝑃 − 1) / 2)) ∈ ℤ → (𝐴↑((𝑃 − 1) / 2)) ∈ ℚ)
9683, 95syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℚ)
9738nngt0d 9087 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 0 < 𝑃)
98 lgsvalmod 15540 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
9911, 77, 98syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 /L 𝑃) mod 𝑃) = ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃))
10094, 96, 23, 33, 97, 99modqmul1 10529 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) mod 𝑃))
10123zcnd 9503 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℂ)
10284, 101mulcomd 8101 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) = ((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))))
103102oveq1d 5966 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴↑((𝑃 − 1) / 2)) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
104 zq 9754 . . . . . . . . . . . 12 ((𝐵 /L 𝑃) ∈ ℤ → (𝐵 /L 𝑃) ∈ ℚ)
10523, 104syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵 /L 𝑃) ∈ ℚ)
106 zq 9754 . . . . . . . . . . . 12 ((𝐵↑((𝑃 − 1) / 2)) ∈ ℤ → (𝐵↑((𝑃 − 1) / 2)) ∈ ℚ)
10786, 106syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝐵↑((𝑃 − 1) / 2)) ∈ ℚ)
108 lgsvalmod 15540 . . . . . . . . . . . 12 ((𝐵 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝐵 /L 𝑃) mod 𝑃) = ((𝐵↑((𝑃 − 1) / 2)) mod 𝑃))
10912, 77, 108syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐵 /L 𝑃) mod 𝑃) = ((𝐵↑((𝑃 − 1) / 2)) mod 𝑃))
110105, 107, 83, 33, 97, 109modqmul1 10529 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐵 /L 𝑃) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
111100, 103, 1103eqtrd 2243 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) = (((𝐵↑((𝑃 − 1) / 2)) · (𝐴↑((𝑃 − 1) / 2))) mod 𝑃))
11290, 92, 1113eqtr4d 2249 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃))
113 moddvds 12154 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ ((𝐴 · 𝐵) /L 𝑃) ∈ ℤ ∧ ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) ∈ ℤ) → ((((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) ↔ 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
11438, 18, 24, 113syl3anc 1250 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((((𝐴 · 𝐵) /L 𝑃) mod 𝑃) = (((𝐴 /L 𝑃) · (𝐵 /L 𝑃)) mod 𝑃) ↔ 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
115112, 114mpbid 147 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))
116 dvdsabsb 12165 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ∈ ℤ) → (𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ↔ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))))
11716, 27, 116syl2anc 411 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (𝑃 ∥ (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) ↔ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))))
118115, 117mpbid 147 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))))
119 dvdsmod0 12148 . . . . . 6 ((𝑃 ∈ ℕ ∧ 𝑃 ∥ (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))))) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = 0)
12038, 118, 119syl2anc 411 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) mod 𝑃) = 0)
12173, 120eqtr3d 2241 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (abs‘(((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))) = 0)
12226, 121abs00d 11541 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → (((𝐴 · 𝐵) /L 𝑃) − ((𝐴 /L 𝑃) · (𝐵 /L 𝑃))) = 0)
12319, 25, 122subeq0d 8398 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑃 ≠ 2) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
124153ad2ant3 1023 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℤ)
12567a1i 9 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → 2 ∈ ℤ)
126 zdceq 9455 . . . 4 ((𝑃 ∈ ℤ ∧ 2 ∈ ℤ) → DECID 𝑃 = 2)
127124, 125, 126syl2anc 411 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → DECID 𝑃 = 2)
128 dcne 2388 . . 3 (DECID 𝑃 = 2 ↔ (𝑃 = 2 ∨ 𝑃 ≠ 2))
129127, 128sylib 122 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑃 = 2 ∨ 𝑃 ≠ 2))
13010, 123, 129mpjaodan 800 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ((𝐴 · 𝐵) /L 𝑃) = ((𝐴 /L 𝑃) · (𝐵 /L 𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2177  wne 2377  {crab 2489  cdif 3164  {csn 3634   class class class wbr 4047  cfv 5276  (class class class)co 5951  cr 7931  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937   < clt 8114  cle 8115  cmin 8250   / cdiv 8752  cn 9043  2c2 9094  0cn0 9302  cz 9379  cuz 9655  cq 9747   mod cmo 10474  cexp 10690  abscabs 11352  cdvds 12142  cprime 12473   /L clgs 15518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-2o 6510  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-proddc 11906  df-dvds 12143  df-gcd 12319  df-prm 12474  df-phi 12577  df-pc 12652  df-lgs 15519
This theorem is referenced by:  lgsdir  15556
  Copyright terms: Public domain W3C validator