ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recclnq GIF version

Theorem recclnq 7452
Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
recclnq (𝐴Q → (*Q𝐴) ∈ Q)

Proof of Theorem recclnq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 recexnq 7450 . 2 (𝐴Q → ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q))
2 recmulnqg 7451 . . . . . 6 ((𝐴Q𝑦Q) → ((*Q𝐴) = 𝑦 ↔ (𝐴 ·Q 𝑦) = 1Q))
32biimpar 297 . . . . 5 (((𝐴Q𝑦Q) ∧ (𝐴 ·Q 𝑦) = 1Q) → (*Q𝐴) = 𝑦)
4 eleq1a 2265 . . . . . 6 (𝑦Q → ((*Q𝐴) = 𝑦 → (*Q𝐴) ∈ Q))
54ad2antlr 489 . . . . 5 (((𝐴Q𝑦Q) ∧ (𝐴 ·Q 𝑦) = 1Q) → ((*Q𝐴) = 𝑦 → (*Q𝐴) ∈ Q))
63, 5mpd 13 . . . 4 (((𝐴Q𝑦Q) ∧ (𝐴 ·Q 𝑦) = 1Q) → (*Q𝐴) ∈ Q)
76expl 378 . . 3 (𝐴Q → ((𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q) → (*Q𝐴) ∈ Q))
87exlimdv 1830 . 2 (𝐴Q → (∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q) → (*Q𝐴) ∈ Q))
91, 8mpd 13 1 (𝐴Q → (*Q𝐴) ∈ Q)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2164  cfv 5254  (class class class)co 5918  Qcnq 7340  1Qc1q 7341   ·Q cmq 7343  *Qcrq 7344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-mi 7366  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-mqqs 7410  df-1nqqs 7411  df-rq 7412
This theorem is referenced by:  recidnq  7453  recrecnq  7454  rec1nq  7455  halfnqq  7470  prarloclemarch  7478  ltrnqg  7480  addnqprllem  7587  addnqprulem  7588  addnqprl  7589  addnqpru  7590  recnnpr  7608  appdivnq  7623  mulnqprl  7628  mulnqpru  7629  1idprl  7650  1idpru  7651  recexprlemm  7684  recexprlemloc  7691  recexprlem1ssl  7693  recexprlem1ssu  7694  archrecnq  7723  archrecpr  7724  caucvgprlemnkj  7726  caucvgprlemnbj  7727  caucvgprlemm  7728  caucvgprlemopl  7729  caucvgprlemlol  7730  caucvgprlemloc  7735  caucvgprlemladdfu  7737  caucvgprlemladdrl  7738  caucvgprprlemloccalc  7744  caucvgprprlemnkltj  7749  caucvgprprlemnkeqj  7750  caucvgprprlemnjltk  7751  caucvgprprlemml  7754  caucvgprprlemopl  7757  caucvgprprlemlol  7758  caucvgprprlemloc  7763  caucvgprprlemexb  7767  caucvgprprlem1  7769  caucvgprprlem2  7770  recidpipr  7916
  Copyright terms: Public domain W3C validator