ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recclnq GIF version

Theorem recclnq 7012
Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
recclnq (𝐴Q → (*Q𝐴) ∈ Q)

Proof of Theorem recclnq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 recexnq 7010 . 2 (𝐴Q → ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q))
2 recmulnqg 7011 . . . . . 6 ((𝐴Q𝑦Q) → ((*Q𝐴) = 𝑦 ↔ (𝐴 ·Q 𝑦) = 1Q))
32biimpar 292 . . . . 5 (((𝐴Q𝑦Q) ∧ (𝐴 ·Q 𝑦) = 1Q) → (*Q𝐴) = 𝑦)
4 eleq1a 2160 . . . . . 6 (𝑦Q → ((*Q𝐴) = 𝑦 → (*Q𝐴) ∈ Q))
54ad2antlr 474 . . . . 5 (((𝐴Q𝑦Q) ∧ (𝐴 ·Q 𝑦) = 1Q) → ((*Q𝐴) = 𝑦 → (*Q𝐴) ∈ Q))
63, 5mpd 13 . . . 4 (((𝐴Q𝑦Q) ∧ (𝐴 ·Q 𝑦) = 1Q) → (*Q𝐴) ∈ Q)
76expl 371 . . 3 (𝐴Q → ((𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q) → (*Q𝐴) ∈ Q))
87exlimdv 1748 . 2 (𝐴Q → (∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q) → (*Q𝐴) ∈ Q))
91, 8mpd 13 1 (𝐴Q → (*Q𝐴) ∈ Q)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1290  wex 1427  wcel 1439  cfv 5028  (class class class)co 5666  Qcnq 6900  1Qc1q 6901   ·Q cmq 6903  *Qcrq 6904
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-1o 6195  df-oadd 6199  df-omul 6200  df-er 6306  df-ec 6308  df-qs 6312  df-ni 6924  df-mi 6926  df-mpq 6965  df-enq 6967  df-nqqs 6968  df-mqqs 6970  df-1nqqs 6971  df-rq 6972
This theorem is referenced by:  recidnq  7013  recrecnq  7014  rec1nq  7015  halfnqq  7030  prarloclemarch  7038  ltrnqg  7040  addnqprllem  7147  addnqprulem  7148  addnqprl  7149  addnqpru  7150  recnnpr  7168  appdivnq  7183  mulnqprl  7188  mulnqpru  7189  1idprl  7210  1idpru  7211  recexprlemm  7244  recexprlemloc  7251  recexprlem1ssl  7253  recexprlem1ssu  7254  archrecnq  7283  archrecpr  7284  caucvgprlemnkj  7286  caucvgprlemnbj  7287  caucvgprlemm  7288  caucvgprlemopl  7289  caucvgprlemlol  7290  caucvgprlemloc  7295  caucvgprlemladdfu  7297  caucvgprlemladdrl  7298  caucvgprprlemloccalc  7304  caucvgprprlemnkltj  7309  caucvgprprlemnkeqj  7310  caucvgprprlemnjltk  7311  caucvgprprlemml  7314  caucvgprprlemopl  7317  caucvgprprlemlol  7318  caucvgprprlemloc  7323  caucvgprprlemexb  7327  caucvgprprlem1  7329  caucvgprprlem2  7330  recidpipr  7454
  Copyright terms: Public domain W3C validator