ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recclnq GIF version

Theorem recclnq 7504
Description: Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
recclnq (𝐴Q → (*Q𝐴) ∈ Q)

Proof of Theorem recclnq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 recexnq 7502 . 2 (𝐴Q → ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q))
2 recmulnqg 7503 . . . . . 6 ((𝐴Q𝑦Q) → ((*Q𝐴) = 𝑦 ↔ (𝐴 ·Q 𝑦) = 1Q))
32biimpar 297 . . . . 5 (((𝐴Q𝑦Q) ∧ (𝐴 ·Q 𝑦) = 1Q) → (*Q𝐴) = 𝑦)
4 eleq1a 2276 . . . . . 6 (𝑦Q → ((*Q𝐴) = 𝑦 → (*Q𝐴) ∈ Q))
54ad2antlr 489 . . . . 5 (((𝐴Q𝑦Q) ∧ (𝐴 ·Q 𝑦) = 1Q) → ((*Q𝐴) = 𝑦 → (*Q𝐴) ∈ Q))
63, 5mpd 13 . . . 4 (((𝐴Q𝑦Q) ∧ (𝐴 ·Q 𝑦) = 1Q) → (*Q𝐴) ∈ Q)
76expl 378 . . 3 (𝐴Q → ((𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q) → (*Q𝐴) ∈ Q))
87exlimdv 1841 . 2 (𝐴Q → (∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q) → (*Q𝐴) ∈ Q))
91, 8mpd 13 1 (𝐴Q → (*Q𝐴) ∈ Q)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wex 1514  wcel 2175  cfv 5270  (class class class)co 5943  Qcnq 7392  1Qc1q 7393   ·Q cmq 7395  *Qcrq 7396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-mi 7418  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-mqqs 7462  df-1nqqs 7463  df-rq 7464
This theorem is referenced by:  recidnq  7505  recrecnq  7506  rec1nq  7507  halfnqq  7522  prarloclemarch  7530  ltrnqg  7532  addnqprllem  7639  addnqprulem  7640  addnqprl  7641  addnqpru  7642  recnnpr  7660  appdivnq  7675  mulnqprl  7680  mulnqpru  7681  1idprl  7702  1idpru  7703  recexprlemm  7736  recexprlemloc  7743  recexprlem1ssl  7745  recexprlem1ssu  7746  archrecnq  7775  archrecpr  7776  caucvgprlemnkj  7778  caucvgprlemnbj  7779  caucvgprlemm  7780  caucvgprlemopl  7781  caucvgprlemlol  7782  caucvgprlemloc  7787  caucvgprlemladdfu  7789  caucvgprlemladdrl  7790  caucvgprprlemloccalc  7796  caucvgprprlemnkltj  7801  caucvgprprlemnkeqj  7802  caucvgprprlemnjltk  7803  caucvgprprlemml  7806  caucvgprprlemopl  7809  caucvgprprlemlol  7810  caucvgprprlemloc  7815  caucvgprprlemexb  7819  caucvgprprlem1  7821  caucvgprprlem2  7822  recidpipr  7968
  Copyright terms: Public domain W3C validator