ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem1 GIF version

Theorem 4sqlem1 12340
Description: Lemma for 4sq (not yet proved here) . The set 𝑆 is the set of all numbers that are expressible as a sum of four squares. Our goal is to show that 𝑆 = ℕ0; here we show one subset direction. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem1 𝑆 ⊆ ℕ0
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑆,𝑛
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem1
StepHypRef Expression
1 4sq.1 . 2 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
2 zsqcl2 10553 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑥↑2) ∈ ℕ0)
3 zsqcl2 10553 . . . . . . . 8 (𝑦 ∈ ℤ → (𝑦↑2) ∈ ℕ0)
4 nn0addcl 9170 . . . . . . . 8 (((𝑥↑2) ∈ ℕ0 ∧ (𝑦↑2) ∈ ℕ0) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
52, 3, 4syl2an 287 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥↑2) + (𝑦↑2)) ∈ ℕ0)
6 zsqcl2 10553 . . . . . . . 8 (𝑧 ∈ ℤ → (𝑧↑2) ∈ ℕ0)
7 zsqcl2 10553 . . . . . . . 8 (𝑤 ∈ ℤ → (𝑤↑2) ∈ ℕ0)
8 nn0addcl 9170 . . . . . . . 8 (((𝑧↑2) ∈ ℕ0 ∧ (𝑤↑2) ∈ ℕ0) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0)
96, 7, 8syl2an 287 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ) → ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0)
10 nn0addcl 9170 . . . . . . 7 ((((𝑥↑2) + (𝑦↑2)) ∈ ℕ0 ∧ ((𝑧↑2) + (𝑤↑2)) ∈ ℕ0) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0)
115, 9, 10syl2an 287 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0)
12 eleq1a 2242 . . . . . 6 ((((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) ∈ ℕ0 → (𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0))
1311, 12syl 14 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ)) → (𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0))
1413rexlimdvva 2595 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0))
1514rexlimivv 2593 . . 3 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2))) → 𝑛 ∈ ℕ0)
1615abssi 3222 . 2 {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} ⊆ ℕ0
171, 16eqsstri 3179 1 𝑆 ⊆ ℕ0
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  {cab 2156  wrex 2449  wss 3121  (class class class)co 5853   + caddc 7777  2c2 8929  0cn0 9135  cz 9212  cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-exp 10476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator