ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem4 GIF version

Theorem 4sqlem4 12588
Description: Lemma for 4sq 12606. We can express the four-square property more compactly in terms of gaussian integers, because the norms of gaussian integers are exactly sums of two squares. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem4 (𝐴𝑆 ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑣,𝑛,𝐴,𝑢   𝑆,𝑛,𝑢,𝑣   𝑢,𝐴
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem4
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
214sqlem2 12585 . . 3 (𝐴𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
3 gzreim 12575 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + (i · 𝑏)) ∈ ℤ[i])
43adantr 276 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝑎 + (i · 𝑏)) ∈ ℤ[i])
5 gzreim 12575 . . . . . . . 8 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (𝑐 + (i · 𝑑)) ∈ ℤ[i])
65adantl 277 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝑐 + (i · 𝑑)) ∈ ℤ[i])
7 gzcn 12568 . . . . . . . . . . . 12 ((𝑎 + (i · 𝑏)) ∈ ℤ[i] → (𝑎 + (i · 𝑏)) ∈ ℂ)
83, 7syl 14 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
98absvalsq2d 11367 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((abs‘(𝑎 + (i · 𝑏)))↑2) = (((ℜ‘(𝑎 + (i · 𝑏)))↑2) + ((ℑ‘(𝑎 + (i · 𝑏)))↑2)))
10 zre 9349 . . . . . . . . . . . . 13 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
11 zre 9349 . . . . . . . . . . . . 13 (𝑏 ∈ ℤ → 𝑏 ∈ ℝ)
12 crre 11041 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (ℜ‘(𝑎 + (i · 𝑏))) = 𝑎)
1310, 11, 12syl2an 289 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (ℜ‘(𝑎 + (i · 𝑏))) = 𝑎)
1413oveq1d 5940 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((ℜ‘(𝑎 + (i · 𝑏)))↑2) = (𝑎↑2))
15 crim 11042 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (ℑ‘(𝑎 + (i · 𝑏))) = 𝑏)
1610, 11, 15syl2an 289 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (ℑ‘(𝑎 + (i · 𝑏))) = 𝑏)
1716oveq1d 5940 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((ℑ‘(𝑎 + (i · 𝑏)))↑2) = (𝑏↑2))
1814, 17oveq12d 5943 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (((ℜ‘(𝑎 + (i · 𝑏)))↑2) + ((ℑ‘(𝑎 + (i · 𝑏)))↑2)) = ((𝑎↑2) + (𝑏↑2)))
199, 18eqtrd 2229 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((abs‘(𝑎 + (i · 𝑏)))↑2) = ((𝑎↑2) + (𝑏↑2)))
20 gzcn 12568 . . . . . . . . . . . 12 ((𝑐 + (i · 𝑑)) ∈ ℤ[i] → (𝑐 + (i · 𝑑)) ∈ ℂ)
215, 20syl 14 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (𝑐 + (i · 𝑑)) ∈ ℂ)
2221absvalsq2d 11367 . . . . . . . . . 10 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((abs‘(𝑐 + (i · 𝑑)))↑2) = (((ℜ‘(𝑐 + (i · 𝑑)))↑2) + ((ℑ‘(𝑐 + (i · 𝑑)))↑2)))
23 zre 9349 . . . . . . . . . . . . 13 (𝑐 ∈ ℤ → 𝑐 ∈ ℝ)
24 zre 9349 . . . . . . . . . . . . 13 (𝑑 ∈ ℤ → 𝑑 ∈ ℝ)
25 crre 11041 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (ℜ‘(𝑐 + (i · 𝑑))) = 𝑐)
2623, 24, 25syl2an 289 . . . . . . . . . . . 12 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (ℜ‘(𝑐 + (i · 𝑑))) = 𝑐)
2726oveq1d 5940 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((ℜ‘(𝑐 + (i · 𝑑)))↑2) = (𝑐↑2))
28 crim 11042 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (ℑ‘(𝑐 + (i · 𝑑))) = 𝑑)
2923, 24, 28syl2an 289 . . . . . . . . . . . 12 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (ℑ‘(𝑐 + (i · 𝑑))) = 𝑑)
3029oveq1d 5940 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((ℑ‘(𝑐 + (i · 𝑑)))↑2) = (𝑑↑2))
3127, 30oveq12d 5943 . . . . . . . . . 10 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (((ℜ‘(𝑐 + (i · 𝑑)))↑2) + ((ℑ‘(𝑐 + (i · 𝑑)))↑2)) = ((𝑐↑2) + (𝑑↑2)))
3222, 31eqtrd 2229 . . . . . . . . 9 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((abs‘(𝑐 + (i · 𝑑)))↑2) = ((𝑐↑2) + (𝑑↑2)))
3319, 32oveqan12d 5944 . . . . . . . 8 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2)) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
3433eqcomd 2202 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2)))
35 fveq2 5561 . . . . . . . . . . 11 (𝑢 = (𝑎 + (i · 𝑏)) → (abs‘𝑢) = (abs‘(𝑎 + (i · 𝑏))))
3635oveq1d 5940 . . . . . . . . . 10 (𝑢 = (𝑎 + (i · 𝑏)) → ((abs‘𝑢)↑2) = ((abs‘(𝑎 + (i · 𝑏)))↑2))
3736oveq1d 5940 . . . . . . . . 9 (𝑢 = (𝑎 + (i · 𝑏)) → (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2)))
3837eqeq2d 2208 . . . . . . . 8 (𝑢 = (𝑎 + (i · 𝑏)) → ((((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ↔ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2))))
39 fveq2 5561 . . . . . . . . . . 11 (𝑣 = (𝑐 + (i · 𝑑)) → (abs‘𝑣) = (abs‘(𝑐 + (i · 𝑑))))
4039oveq1d 5940 . . . . . . . . . 10 (𝑣 = (𝑐 + (i · 𝑑)) → ((abs‘𝑣)↑2) = ((abs‘(𝑐 + (i · 𝑑)))↑2))
4140oveq2d 5941 . . . . . . . . 9 (𝑣 = (𝑐 + (i · 𝑑)) → (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2)) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2)))
4241eqeq2d 2208 . . . . . . . 8 (𝑣 = (𝑐 + (i · 𝑑)) → ((((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2)) ↔ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2))))
4338, 42rspc2ev 2883 . . . . . . 7 (((𝑎 + (i · 𝑏)) ∈ ℤ[i] ∧ (𝑐 + (i · 𝑑)) ∈ ℤ[i] ∧ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
444, 6, 34, 43syl3anc 1249 . . . . . 6 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
45 eqeq1 2203 . . . . . . 7 (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → (𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ↔ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
46452rexbidv 2522 . . . . . 6 (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → (∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
4744, 46syl5ibrcom 157 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
4847rexlimdvva 2622 . . . 4 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
4948rexlimivv 2620 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
502, 49sylbi 121 . 2 (𝐴𝑆 → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
5114sqlem4a 12587 . . . 4 ((𝑢 ∈ ℤ[i] ∧ 𝑣 ∈ ℤ[i]) → (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ∈ 𝑆)
52 eleq1a 2268 . . . 4 ((((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ∈ 𝑆 → (𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) → 𝐴𝑆))
5351, 52syl 14 . . 3 ((𝑢 ∈ ℤ[i] ∧ 𝑣 ∈ ℤ[i]) → (𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) → 𝐴𝑆))
5453rexlimivv 2620 . 2 (∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) → 𝐴𝑆)
5550, 54impbii 126 1 (𝐴𝑆 ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wrex 2476  cfv 5259  (class class class)co 5925  cc 7896  cr 7897  ici 7900   + caddc 7901   · cmul 7903  2c2 9060  cz 9345  cexp 10649  cre 11024  cim 11025  abscabs 11181  ℤ[i]cgz 12565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-rp 9748  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-gz 12566
This theorem is referenced by:  mul4sq  12590
  Copyright terms: Public domain W3C validator