ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem4 GIF version

Theorem 4sqlem4 12915
Description: Lemma for 4sq 12933. We can express the four-square property more compactly in terms of gaussian integers, because the norms of gaussian integers are exactly sums of two squares. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
Assertion
Ref Expression
4sqlem4 (𝐴𝑆 ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑣,𝑛,𝐴,𝑢   𝑆,𝑛,𝑢,𝑣   𝑢,𝐴
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4sqlem4
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . . 4 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
214sqlem2 12912 . . 3 (𝐴𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
3 gzreim 12902 . . . . . . . 8 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + (i · 𝑏)) ∈ ℤ[i])
43adantr 276 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝑎 + (i · 𝑏)) ∈ ℤ[i])
5 gzreim 12902 . . . . . . . 8 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (𝑐 + (i · 𝑑)) ∈ ℤ[i])
65adantl 277 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝑐 + (i · 𝑑)) ∈ ℤ[i])
7 gzcn 12895 . . . . . . . . . . . 12 ((𝑎 + (i · 𝑏)) ∈ ℤ[i] → (𝑎 + (i · 𝑏)) ∈ ℂ)
83, 7syl 14 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 + (i · 𝑏)) ∈ ℂ)
98absvalsq2d 11694 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((abs‘(𝑎 + (i · 𝑏)))↑2) = (((ℜ‘(𝑎 + (i · 𝑏)))↑2) + ((ℑ‘(𝑎 + (i · 𝑏)))↑2)))
10 zre 9450 . . . . . . . . . . . . 13 (𝑎 ∈ ℤ → 𝑎 ∈ ℝ)
11 zre 9450 . . . . . . . . . . . . 13 (𝑏 ∈ ℤ → 𝑏 ∈ ℝ)
12 crre 11368 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (ℜ‘(𝑎 + (i · 𝑏))) = 𝑎)
1310, 11, 12syl2an 289 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (ℜ‘(𝑎 + (i · 𝑏))) = 𝑎)
1413oveq1d 6016 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((ℜ‘(𝑎 + (i · 𝑏)))↑2) = (𝑎↑2))
15 crim 11369 . . . . . . . . . . . . 13 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (ℑ‘(𝑎 + (i · 𝑏))) = 𝑏)
1610, 11, 15syl2an 289 . . . . . . . . . . . 12 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (ℑ‘(𝑎 + (i · 𝑏))) = 𝑏)
1716oveq1d 6016 . . . . . . . . . . 11 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((ℑ‘(𝑎 + (i · 𝑏)))↑2) = (𝑏↑2))
1814, 17oveq12d 6019 . . . . . . . . . 10 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (((ℜ‘(𝑎 + (i · 𝑏)))↑2) + ((ℑ‘(𝑎 + (i · 𝑏)))↑2)) = ((𝑎↑2) + (𝑏↑2)))
199, 18eqtrd 2262 . . . . . . . . 9 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((abs‘(𝑎 + (i · 𝑏)))↑2) = ((𝑎↑2) + (𝑏↑2)))
20 gzcn 12895 . . . . . . . . . . . 12 ((𝑐 + (i · 𝑑)) ∈ ℤ[i] → (𝑐 + (i · 𝑑)) ∈ ℂ)
215, 20syl 14 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (𝑐 + (i · 𝑑)) ∈ ℂ)
2221absvalsq2d 11694 . . . . . . . . . 10 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((abs‘(𝑐 + (i · 𝑑)))↑2) = (((ℜ‘(𝑐 + (i · 𝑑)))↑2) + ((ℑ‘(𝑐 + (i · 𝑑)))↑2)))
23 zre 9450 . . . . . . . . . . . . 13 (𝑐 ∈ ℤ → 𝑐 ∈ ℝ)
24 zre 9450 . . . . . . . . . . . . 13 (𝑑 ∈ ℤ → 𝑑 ∈ ℝ)
25 crre 11368 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (ℜ‘(𝑐 + (i · 𝑑))) = 𝑐)
2623, 24, 25syl2an 289 . . . . . . . . . . . 12 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (ℜ‘(𝑐 + (i · 𝑑))) = 𝑐)
2726oveq1d 6016 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((ℜ‘(𝑐 + (i · 𝑑)))↑2) = (𝑐↑2))
28 crim 11369 . . . . . . . . . . . . 13 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (ℑ‘(𝑐 + (i · 𝑑))) = 𝑑)
2923, 24, 28syl2an 289 . . . . . . . . . . . 12 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (ℑ‘(𝑐 + (i · 𝑑))) = 𝑑)
3029oveq1d 6016 . . . . . . . . . . 11 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((ℑ‘(𝑐 + (i · 𝑑)))↑2) = (𝑑↑2))
3127, 30oveq12d 6019 . . . . . . . . . 10 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → (((ℜ‘(𝑐 + (i · 𝑑)))↑2) + ((ℑ‘(𝑐 + (i · 𝑑)))↑2)) = ((𝑐↑2) + (𝑑↑2)))
3222, 31eqtrd 2262 . . . . . . . . 9 ((𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ) → ((abs‘(𝑐 + (i · 𝑑)))↑2) = ((𝑐↑2) + (𝑑↑2)))
3319, 32oveqan12d 6020 . . . . . . . 8 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2)) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
3433eqcomd 2235 . . . . . . 7 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2)))
35 fveq2 5627 . . . . . . . . . . 11 (𝑢 = (𝑎 + (i · 𝑏)) → (abs‘𝑢) = (abs‘(𝑎 + (i · 𝑏))))
3635oveq1d 6016 . . . . . . . . . 10 (𝑢 = (𝑎 + (i · 𝑏)) → ((abs‘𝑢)↑2) = ((abs‘(𝑎 + (i · 𝑏)))↑2))
3736oveq1d 6016 . . . . . . . . 9 (𝑢 = (𝑎 + (i · 𝑏)) → (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2)))
3837eqeq2d 2241 . . . . . . . 8 (𝑢 = (𝑎 + (i · 𝑏)) → ((((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ↔ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2))))
39 fveq2 5627 . . . . . . . . . . 11 (𝑣 = (𝑐 + (i · 𝑑)) → (abs‘𝑣) = (abs‘(𝑐 + (i · 𝑑))))
4039oveq1d 6016 . . . . . . . . . 10 (𝑣 = (𝑐 + (i · 𝑑)) → ((abs‘𝑣)↑2) = ((abs‘(𝑐 + (i · 𝑑)))↑2))
4140oveq2d 6017 . . . . . . . . 9 (𝑣 = (𝑐 + (i · 𝑑)) → (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2)) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2)))
4241eqeq2d 2241 . . . . . . . 8 (𝑣 = (𝑐 + (i · 𝑑)) → ((((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘𝑣)↑2)) ↔ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2))))
4338, 42rspc2ev 2922 . . . . . . 7 (((𝑎 + (i · 𝑏)) ∈ ℤ[i] ∧ (𝑐 + (i · 𝑑)) ∈ ℤ[i] ∧ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘(𝑎 + (i · 𝑏)))↑2) + ((abs‘(𝑐 + (i · 𝑑)))↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
444, 6, 34, 43syl3anc 1271 . . . . . 6 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
45 eqeq1 2236 . . . . . . 7 (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → (𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ↔ (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
46452rexbidv 2555 . . . . . 6 (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → (∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
4744, 46syl5ibrcom 157 . . . . 5 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → (𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
4847rexlimdvva 2656 . . . 4 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2))))
4948rexlimivv 2654 . . 3 (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
502, 49sylbi 121 . 2 (𝐴𝑆 → ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
5114sqlem4a 12914 . . . 4 ((𝑢 ∈ ℤ[i] ∧ 𝑣 ∈ ℤ[i]) → (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ∈ 𝑆)
52 eleq1a 2301 . . . 4 ((((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) ∈ 𝑆 → (𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) → 𝐴𝑆))
5351, 52syl 14 . . 3 ((𝑢 ∈ ℤ[i] ∧ 𝑣 ∈ ℤ[i]) → (𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) → 𝐴𝑆))
5453rexlimivv 2654 . 2 (∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)) → 𝐴𝑆)
5550, 54impbii 126 1 (𝐴𝑆 ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {cab 2215  wrex 2509  cfv 5318  (class class class)co 6001  cc 7997  cr 7998  ici 8001   + caddc 8002   · cmul 8004  2c2 9161  cz 9446  cexp 10760  cre 11351  cim 11352  abscabs 11508  ℤ[i]cgz 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-rp 9850  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-gz 12893
This theorem is referenced by:  mul4sq  12917
  Copyright terms: Public domain W3C validator