![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gzmulcl | GIF version |
Description: The gaussian integers are closed under multiplication. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
gzmulcl | ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℤ[i]) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gzcn 12353 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | |
2 | gzcn 12353 | . . 3 ⊢ (𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ) | |
3 | mulcl 7929 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℂ) |
5 | remul 10865 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) | |
6 | 1, 2, 5 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) |
7 | elgz 12352 | . . . . . 6 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
8 | 7 | simp2bi 1013 | . . . . 5 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘𝐴) ∈ ℤ) |
9 | elgz 12352 | . . . . . 6 ⊢ (𝐵 ∈ ℤ[i] ↔ (𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ)) | |
10 | 9 | simp2bi 1013 | . . . . 5 ⊢ (𝐵 ∈ ℤ[i] → (ℜ‘𝐵) ∈ ℤ) |
11 | zmulcl 9295 | . . . . 5 ⊢ (((ℜ‘𝐴) ∈ ℤ ∧ (ℜ‘𝐵) ∈ ℤ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ) | |
12 | 8, 10, 11 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ) |
13 | 7 | simp3bi 1014 | . . . . 5 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘𝐴) ∈ ℤ) |
14 | 9 | simp3bi 1014 | . . . . 5 ⊢ (𝐵 ∈ ℤ[i] → (ℑ‘𝐵) ∈ ℤ) |
15 | zmulcl 9295 | . . . . 5 ⊢ (((ℑ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ) | |
16 | 13, 14, 15 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ) |
17 | 12, 16 | zsubcld 9369 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℤ) |
18 | 6, 17 | eqeltrd 2254 | . 2 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 · 𝐵)) ∈ ℤ) |
19 | immul 10872 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | |
20 | 1, 2, 19 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) |
21 | zmulcl 9295 | . . . . 5 ⊢ (((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ) | |
22 | 8, 14, 21 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ) |
23 | zmulcl 9295 | . . . . 5 ⊢ (((ℑ‘𝐴) ∈ ℤ ∧ (ℜ‘𝐵) ∈ ℤ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ) | |
24 | 13, 10, 23 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ) |
25 | 22, 24 | zaddcld 9368 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℤ) |
26 | 20, 25 | eqeltrd 2254 | . 2 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 · 𝐵)) ∈ ℤ) |
27 | elgz 12352 | . 2 ⊢ ((𝐴 · 𝐵) ∈ ℤ[i] ↔ ((𝐴 · 𝐵) ∈ ℂ ∧ (ℜ‘(𝐴 · 𝐵)) ∈ ℤ ∧ (ℑ‘(𝐴 · 𝐵)) ∈ ℤ)) | |
28 | 4, 18, 26, 27 | syl3anbrc 1181 | 1 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℤ[i]) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ‘cfv 5212 (class class class)co 5869 ℂcc 7800 + caddc 7805 · cmul 7807 − cmin 8118 ℤcz 9242 ℜcre 10833 ℑcim 10834 ℤ[i]cgz 12350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4118 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-cnex 7893 ax-resscn 7894 ax-1cn 7895 ax-1re 7896 ax-icn 7897 ax-addcl 7898 ax-addrcl 7899 ax-mulcl 7900 ax-mulrcl 7901 ax-addcom 7902 ax-mulcom 7903 ax-addass 7904 ax-mulass 7905 ax-distr 7906 ax-i2m1 7907 ax-0lt1 7908 ax-1rid 7909 ax-0id 7910 ax-rnegex 7911 ax-precex 7912 ax-cnre 7913 ax-pre-ltirr 7914 ax-pre-ltwlin 7915 ax-pre-lttrn 7916 ax-pre-apti 7917 ax-pre-ltadd 7918 ax-pre-mulgt0 7919 ax-pre-mulext 7920 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-br 4001 df-opab 4062 df-mpt 4063 df-id 4290 df-po 4293 df-iso 4294 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-pnf 7984 df-mnf 7985 df-xr 7986 df-ltxr 7987 df-le 7988 df-sub 8120 df-neg 8121 df-reap 8522 df-ap 8529 df-div 8619 df-inn 8909 df-2 8967 df-n0 9166 df-z 9243 df-cj 10835 df-re 10836 df-im 10837 df-gz 12351 |
This theorem is referenced by: gzreim 12360 mul4sqlem 12374 mul2sq 14119 2sqlem3 14120 |
Copyright terms: Public domain | W3C validator |