ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gzmulcl GIF version

Theorem gzmulcl 12359
Description: The gaussian integers are closed under multiplication. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzmulcl ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℤ[i])

Proof of Theorem gzmulcl
StepHypRef Expression
1 gzcn 12353 . . 3 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
2 gzcn 12353 . . 3 (𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ)
3 mulcl 7929 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
41, 2, 3syl2an 289 . 2 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℂ)
5 remul 10865 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
61, 2, 5syl2an 289 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
7 elgz 12352 . . . . . 6 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
87simp2bi 1013 . . . . 5 (𝐴 ∈ ℤ[i] → (ℜ‘𝐴) ∈ ℤ)
9 elgz 12352 . . . . . 6 (𝐵 ∈ ℤ[i] ↔ (𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ))
109simp2bi 1013 . . . . 5 (𝐵 ∈ ℤ[i] → (ℜ‘𝐵) ∈ ℤ)
11 zmulcl 9295 . . . . 5 (((ℜ‘𝐴) ∈ ℤ ∧ (ℜ‘𝐵) ∈ ℤ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ)
128, 10, 11syl2an 289 . . . 4 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ)
137simp3bi 1014 . . . . 5 (𝐴 ∈ ℤ[i] → (ℑ‘𝐴) ∈ ℤ)
149simp3bi 1014 . . . . 5 (𝐵 ∈ ℤ[i] → (ℑ‘𝐵) ∈ ℤ)
15 zmulcl 9295 . . . . 5 (((ℑ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ)
1613, 14, 15syl2an 289 . . . 4 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ)
1712, 16zsubcld 9369 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℤ)
186, 17eqeltrd 2254 . 2 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 · 𝐵)) ∈ ℤ)
19 immul 10872 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
201, 2, 19syl2an 289 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
21 zmulcl 9295 . . . . 5 (((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ)
228, 14, 21syl2an 289 . . . 4 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ)
23 zmulcl 9295 . . . . 5 (((ℑ‘𝐴) ∈ ℤ ∧ (ℜ‘𝐵) ∈ ℤ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ)
2413, 10, 23syl2an 289 . . . 4 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ)
2522, 24zaddcld 9368 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℤ)
2620, 25eqeltrd 2254 . 2 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 · 𝐵)) ∈ ℤ)
27 elgz 12352 . 2 ((𝐴 · 𝐵) ∈ ℤ[i] ↔ ((𝐴 · 𝐵) ∈ ℂ ∧ (ℜ‘(𝐴 · 𝐵)) ∈ ℤ ∧ (ℑ‘(𝐴 · 𝐵)) ∈ ℤ))
284, 18, 26, 27syl3anbrc 1181 1 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℤ[i])
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cfv 5212  (class class class)co 5869  cc 7800   + caddc 7805   · cmul 7807  cmin 8118  cz 9242  cre 10833  cim 10834  ℤ[i]cgz 12350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-cj 10835  df-re 10836  df-im 10837  df-gz 12351
This theorem is referenced by:  gzreim  12360  mul4sqlem  12374  mul2sq  14119  2sqlem3  14120
  Copyright terms: Public domain W3C validator