| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gzmulcl | GIF version | ||
| Description: The gaussian integers are closed under multiplication. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| gzmulcl | ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℤ[i]) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gzcn 12541 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | |
| 2 | gzcn 12541 | . . 3 ⊢ (𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ) | |
| 3 | mulcl 8006 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℂ) |
| 5 | remul 11037 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) | |
| 6 | 1, 2, 5 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) |
| 7 | elgz 12540 | . . . . . 6 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
| 8 | 7 | simp2bi 1015 | . . . . 5 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘𝐴) ∈ ℤ) |
| 9 | elgz 12540 | . . . . . 6 ⊢ (𝐵 ∈ ℤ[i] ↔ (𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ)) | |
| 10 | 9 | simp2bi 1015 | . . . . 5 ⊢ (𝐵 ∈ ℤ[i] → (ℜ‘𝐵) ∈ ℤ) |
| 11 | zmulcl 9379 | . . . . 5 ⊢ (((ℜ‘𝐴) ∈ ℤ ∧ (ℜ‘𝐵) ∈ ℤ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ) | |
| 12 | 8, 10, 11 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ) |
| 13 | 7 | simp3bi 1016 | . . . . 5 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘𝐴) ∈ ℤ) |
| 14 | 9 | simp3bi 1016 | . . . . 5 ⊢ (𝐵 ∈ ℤ[i] → (ℑ‘𝐵) ∈ ℤ) |
| 15 | zmulcl 9379 | . . . . 5 ⊢ (((ℑ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ) | |
| 16 | 13, 14, 15 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ) |
| 17 | 12, 16 | zsubcld 9453 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℤ) |
| 18 | 6, 17 | eqeltrd 2273 | . 2 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 · 𝐵)) ∈ ℤ) |
| 19 | immul 11044 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | |
| 20 | 1, 2, 19 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) |
| 21 | zmulcl 9379 | . . . . 5 ⊢ (((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ) | |
| 22 | 8, 14, 21 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ) |
| 23 | zmulcl 9379 | . . . . 5 ⊢ (((ℑ‘𝐴) ∈ ℤ ∧ (ℜ‘𝐵) ∈ ℤ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ) | |
| 24 | 13, 10, 23 | syl2an 289 | . . . 4 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ) |
| 25 | 22, 24 | zaddcld 9452 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℤ) |
| 26 | 20, 25 | eqeltrd 2273 | . 2 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 · 𝐵)) ∈ ℤ) |
| 27 | elgz 12540 | . 2 ⊢ ((𝐴 · 𝐵) ∈ ℤ[i] ↔ ((𝐴 · 𝐵) ∈ ℂ ∧ (ℜ‘(𝐴 · 𝐵)) ∈ ℤ ∧ (ℑ‘(𝐴 · 𝐵)) ∈ ℤ)) | |
| 28 | 4, 18, 26, 27 | syl3anbrc 1183 | 1 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℤ[i]) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 + caddc 7882 · cmul 7884 − cmin 8197 ℤcz 9326 ℜcre 11005 ℑcim 11006 ℤ[i]cgz 12538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-cj 11007 df-re 11008 df-im 11009 df-gz 12539 |
| This theorem is referenced by: gzreim 12548 mul4sqlem 12562 gzsubrg 14138 mul2sq 15357 2sqlem3 15358 |
| Copyright terms: Public domain | W3C validator |