ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gzmulcl GIF version

Theorem gzmulcl 12370
Description: The gaussian integers are closed under multiplication. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzmulcl ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℤ[i])

Proof of Theorem gzmulcl
StepHypRef Expression
1 gzcn 12364 . . 3 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
2 gzcn 12364 . . 3 (𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ)
3 mulcl 7937 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
41, 2, 3syl2an 289 . 2 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℂ)
5 remul 10876 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
61, 2, 5syl2an 289 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
7 elgz 12363 . . . . . 6 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
87simp2bi 1013 . . . . 5 (𝐴 ∈ ℤ[i] → (ℜ‘𝐴) ∈ ℤ)
9 elgz 12363 . . . . . 6 (𝐵 ∈ ℤ[i] ↔ (𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ))
109simp2bi 1013 . . . . 5 (𝐵 ∈ ℤ[i] → (ℜ‘𝐵) ∈ ℤ)
11 zmulcl 9304 . . . . 5 (((ℜ‘𝐴) ∈ ℤ ∧ (ℜ‘𝐵) ∈ ℤ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ)
128, 10, 11syl2an 289 . . . 4 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ)
137simp3bi 1014 . . . . 5 (𝐴 ∈ ℤ[i] → (ℑ‘𝐴) ∈ ℤ)
149simp3bi 1014 . . . . 5 (𝐵 ∈ ℤ[i] → (ℑ‘𝐵) ∈ ℤ)
15 zmulcl 9304 . . . . 5 (((ℑ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ)
1613, 14, 15syl2an 289 . . . 4 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ)
1712, 16zsubcld 9378 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℤ)
186, 17eqeltrd 2254 . 2 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 · 𝐵)) ∈ ℤ)
19 immul 10883 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
201, 2, 19syl2an 289 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
21 zmulcl 9304 . . . . 5 (((ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ)
228, 14, 21syl2an 289 . . . 4 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℤ)
23 zmulcl 9304 . . . . 5 (((ℑ‘𝐴) ∈ ℤ ∧ (ℜ‘𝐵) ∈ ℤ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ)
2413, 10, 23syl2an 289 . . . 4 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℤ)
2522, 24zaddcld 9377 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℤ)
2620, 25eqeltrd 2254 . 2 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 · 𝐵)) ∈ ℤ)
27 elgz 12363 . 2 ((𝐴 · 𝐵) ∈ ℤ[i] ↔ ((𝐴 · 𝐵) ∈ ℂ ∧ (ℜ‘(𝐴 · 𝐵)) ∈ ℤ ∧ (ℑ‘(𝐴 · 𝐵)) ∈ ℤ))
284, 18, 26, 27syl3anbrc 1181 1 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℤ[i])
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  cfv 5216  (class class class)co 5874  cc 7808   + caddc 7813   · cmul 7815  cmin 8126  cz 9251  cre 10844  cim 10845  ℤ[i]cgz 12361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-po 4296  df-iso 4297  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-n0 9175  df-z 9252  df-cj 10846  df-re 10847  df-im 10848  df-gz 12362
This theorem is referenced by:  gzreim  12371  mul4sqlem  12385  gzsubrg  13367  mul2sq  14345  2sqlem3  14346
  Copyright terms: Public domain W3C validator