| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gzaddcl | GIF version | ||
| Description: The gaussian integers are closed under addition. (Contributed by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| gzaddcl | ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℤ[i]) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gzcn 12810 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | |
| 2 | gzcn 12810 | . . 3 ⊢ (𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ) | |
| 3 | addcl 8085 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℂ) |
| 5 | readd 11295 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) | |
| 6 | 1, 2, 5 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) |
| 7 | elgz 12809 | . . . . 5 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
| 8 | 7 | simp2bi 1016 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘𝐴) ∈ ℤ) |
| 9 | elgz 12809 | . . . . 5 ⊢ (𝐵 ∈ ℤ[i] ↔ (𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ)) | |
| 10 | 9 | simp2bi 1016 | . . . 4 ⊢ (𝐵 ∈ ℤ[i] → (ℜ‘𝐵) ∈ ℤ) |
| 11 | zaddcl 9447 | . . . 4 ⊢ (((ℜ‘𝐴) ∈ ℤ ∧ (ℜ‘𝐵) ∈ ℤ) → ((ℜ‘𝐴) + (ℜ‘𝐵)) ∈ ℤ) | |
| 12 | 8, 10, 11 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℜ‘𝐴) + (ℜ‘𝐵)) ∈ ℤ) |
| 13 | 6, 12 | eqeltrd 2284 | . 2 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 + 𝐵)) ∈ ℤ) |
| 14 | imadd 11303 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) | |
| 15 | 1, 2, 14 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) |
| 16 | 7 | simp3bi 1017 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘𝐴) ∈ ℤ) |
| 17 | 9 | simp3bi 1017 | . . . 4 ⊢ (𝐵 ∈ ℤ[i] → (ℑ‘𝐵) ∈ ℤ) |
| 18 | zaddcl 9447 | . . . 4 ⊢ (((ℑ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ) → ((ℑ‘𝐴) + (ℑ‘𝐵)) ∈ ℤ) | |
| 19 | 16, 17, 18 | syl2an 289 | . . 3 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℑ‘𝐴) + (ℑ‘𝐵)) ∈ ℤ) |
| 20 | 15, 19 | eqeltrd 2284 | . 2 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 + 𝐵)) ∈ ℤ) |
| 21 | elgz 12809 | . 2 ⊢ ((𝐴 + 𝐵) ∈ ℤ[i] ↔ ((𝐴 + 𝐵) ∈ ℂ ∧ (ℜ‘(𝐴 + 𝐵)) ∈ ℤ ∧ (ℑ‘(𝐴 + 𝐵)) ∈ ℤ)) | |
| 22 | 4, 13, 20, 21 | syl3anbrc 1184 | 1 ⊢ ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℤ[i]) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ‘cfv 5290 (class class class)co 5967 ℂcc 7958 + caddc 7963 ℤcz 9407 ℜcre 11266 ℑcim 11267 ℤ[i]cgz 12807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-cj 11268 df-re 11269 df-im 11270 df-gz 12808 |
| This theorem is referenced by: gzreim 12817 gzsubcl 12818 mul4sqlem 12831 gzsubrg 14459 |
| Copyright terms: Public domain | W3C validator |