ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gzaddcl GIF version

Theorem gzaddcl 12900
Description: The gaussian integers are closed under addition. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
gzaddcl ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℤ[i])

Proof of Theorem gzaddcl
StepHypRef Expression
1 gzcn 12895 . . 3 (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
2 gzcn 12895 . . 3 (𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ)
3 addcl 8124 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
41, 2, 3syl2an 289 . 2 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℂ)
5 readd 11380 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)))
61, 2, 5syl2an 289 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)))
7 elgz 12894 . . . . 5 (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
87simp2bi 1037 . . . 4 (𝐴 ∈ ℤ[i] → (ℜ‘𝐴) ∈ ℤ)
9 elgz 12894 . . . . 5 (𝐵 ∈ ℤ[i] ↔ (𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ))
109simp2bi 1037 . . . 4 (𝐵 ∈ ℤ[i] → (ℜ‘𝐵) ∈ ℤ)
11 zaddcl 9486 . . . 4 (((ℜ‘𝐴) ∈ ℤ ∧ (ℜ‘𝐵) ∈ ℤ) → ((ℜ‘𝐴) + (ℜ‘𝐵)) ∈ ℤ)
128, 10, 11syl2an 289 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℜ‘𝐴) + (ℜ‘𝐵)) ∈ ℤ)
136, 12eqeltrd 2306 . 2 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℜ‘(𝐴 + 𝐵)) ∈ ℤ)
14 imadd 11388 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
151, 2, 14syl2an 289 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
167simp3bi 1038 . . . 4 (𝐴 ∈ ℤ[i] → (ℑ‘𝐴) ∈ ℤ)
179simp3bi 1038 . . . 4 (𝐵 ∈ ℤ[i] → (ℑ‘𝐵) ∈ ℤ)
18 zaddcl 9486 . . . 4 (((ℑ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐵) ∈ ℤ) → ((ℑ‘𝐴) + (ℑ‘𝐵)) ∈ ℤ)
1916, 17, 18syl2an 289 . . 3 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → ((ℑ‘𝐴) + (ℑ‘𝐵)) ∈ ℤ)
2015, 19eqeltrd 2306 . 2 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (ℑ‘(𝐴 + 𝐵)) ∈ ℤ)
21 elgz 12894 . 2 ((𝐴 + 𝐵) ∈ ℤ[i] ↔ ((𝐴 + 𝐵) ∈ ℂ ∧ (ℜ‘(𝐴 + 𝐵)) ∈ ℤ ∧ (ℑ‘(𝐴 + 𝐵)) ∈ ℤ))
224, 13, 20, 21syl3anbrc 1205 1 ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℤ[i])
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6001  cc 7997   + caddc 8002  cz 9446  cre 11351  cim 11352  ℤ[i]cgz 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-cj 11353  df-re 11354  df-im 11355  df-gz 12893
This theorem is referenced by:  gzreim  12902  gzsubcl  12903  mul4sqlem  12916  gzsubrg  14546
  Copyright terms: Public domain W3C validator