| Intuitionistic Logic Explorer Theorem List (p. 124 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-prm 12301* | Define the set of prime numbers. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o} | ||
| Theorem | isprm 12302* | The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ ℕ ∧ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o)) | ||
| Theorem | prmnn 12303 | A prime number is a positive integer. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | ||
| Theorem | prmz 12304 | A prime number is an integer. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Jonathan Yan, 16-Jul-2017.) |
| ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | ||
| Theorem | prmssnn 12305 | The prime numbers are a subset of the positive integers. (Contributed by AV, 22-Jul-2020.) |
| ⊢ ℙ ⊆ ℕ | ||
| Theorem | prmex 12306 | The set of prime numbers exists. (Contributed by AV, 22-Jul-2020.) |
| ⊢ ℙ ∈ V | ||
| Theorem | 1nprm 12307 | 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
| ⊢ ¬ 1 ∈ ℙ | ||
| Theorem | 1idssfct 12308* | The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ (𝑁 ∈ ℕ → {1, 𝑁} ⊆ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑁}) | ||
| Theorem | isprm2lem 12309* | Lemma for isprm2 12310. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} ≈ 2o ↔ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑃} = {1, 𝑃})) | ||
| Theorem | isprm2 12310* | The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only positive divisors are 1 and itself. Definition in [ApostolNT] p. 16. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | ||
| Theorem | isprm3 12311* | The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(𝑃 − 1)) ¬ 𝑧 ∥ 𝑃)) | ||
| Theorem | isprm4 12312* | The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (ℤ≥‘2)(𝑧 ∥ 𝑃 → 𝑧 = 𝑃))) | ||
| Theorem | prmind2 12313* | A variation on prmind 12314 assuming complete induction for primes. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 · 𝑧) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ 𝜓 & ⊢ ((𝑥 ∈ ℙ ∧ ∀𝑦 ∈ (1...(𝑥 − 1))𝜒) → 𝜑) & ⊢ ((𝑦 ∈ (ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2)) → ((𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜂) | ||
| Theorem | prmind 12314* | Perform induction over the multiplicative structure of ℕ. If a property 𝜑(𝑥) holds for the primes and 1 and is preserved under multiplication, then it holds for every positive integer. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 · 𝑧) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ 𝜓 & ⊢ (𝑥 ∈ ℙ → 𝜑) & ⊢ ((𝑦 ∈ (ℤ≥‘2) ∧ 𝑧 ∈ (ℤ≥‘2)) → ((𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜂) | ||
| Theorem | dvdsprime 12315 | If 𝑀 divides a prime, then 𝑀 is either the prime or one. (Contributed by Scott Fenton, 8-Apr-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑃 ↔ (𝑀 = 𝑃 ∨ 𝑀 = 1))) | ||
| Theorem | nprm 12316 | A product of two integers greater than one is composite. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) → ¬ (𝐴 · 𝐵) ∈ ℙ) | ||
| Theorem | nprmi 12317 | An inference for compositeness. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Jun-2015.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ & ⊢ 1 < 𝐴 & ⊢ 1 < 𝐵 & ⊢ (𝐴 · 𝐵) = 𝑁 ⇒ ⊢ ¬ 𝑁 ∈ ℙ | ||
| Theorem | dvdsnprmd 12318 | If a number is divisible by an integer greater than 1 and less then the number, the number is not prime. (Contributed by AV, 24-Jul-2021.) |
| ⊢ (𝜑 → 1 < 𝐴) & ⊢ (𝜑 → 𝐴 < 𝑁) & ⊢ (𝜑 → 𝐴 ∥ 𝑁) ⇒ ⊢ (𝜑 → ¬ 𝑁 ∈ ℙ) | ||
| Theorem | prm2orodd 12319 | A prime number is either 2 or odd. (Contributed by AV, 19-Jun-2021.) |
| ⊢ (𝑃 ∈ ℙ → (𝑃 = 2 ∨ ¬ 2 ∥ 𝑃)) | ||
| Theorem | 2prm 12320 | 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
| ⊢ 2 ∈ ℙ | ||
| Theorem | 3prm 12321 | 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ 3 ∈ ℙ | ||
| Theorem | 4nprm 12322 | 4 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 18-Feb-2014.) |
| ⊢ ¬ 4 ∈ ℙ | ||
| Theorem | prmdc 12323 | Primality is decidable. (Contributed by Jim Kingdon, 30-Sep-2024.) |
| ⊢ (𝑁 ∈ ℕ → DECID 𝑁 ∈ ℙ) | ||
| Theorem | prmuz2 12324 | A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | ||
| Theorem | prmgt1 12325 | A prime number is an integer greater than 1. (Contributed by Alexander van der Vekens, 17-May-2018.) |
| ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | ||
| Theorem | prmm2nn0 12326 | Subtracting 2 from a prime number results in a nonnegative integer. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
| ⊢ (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0) | ||
| Theorem | oddprmgt2 12327 | An odd prime is greater than 2. (Contributed by AV, 20-Aug-2021.) |
| ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 2 < 𝑃) | ||
| Theorem | oddprmge3 12328 | An odd prime is greater than or equal to 3. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 20-Aug-2021.) |
| ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ≥‘3)) | ||
| Theorem | sqnprm 12329 | A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (𝐴 ∈ ℤ → ¬ (𝐴↑2) ∈ ℙ) | ||
| Theorem | dvdsprm 12330 | An integer greater than or equal to 2 divides a prime number iff it is equal to it. (Contributed by Paul Chapman, 26-Oct-2012.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (𝑁 ∥ 𝑃 ↔ 𝑁 = 𝑃)) | ||
| Theorem | exprmfct 12331* | Every integer greater than or equal to 2 has a prime factor. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 20-Jun-2015.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝑁) | ||
| Theorem | prmdvdsfz 12332* | Each integer greater than 1 and less then or equal to a fixed number is divisible by a prime less then or equal to this fixed number. (Contributed by AV, 15-Aug-2020.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) | ||
| Theorem | nprmdvds1 12333 | No prime number divides 1. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 2-Jul-2015.) |
| ⊢ (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1) | ||
| Theorem | isprm5lem 12334* | Lemma for isprm5 12335. The interesting direction (showing that one only needs to check prime divisors up to the square root of 𝑃). (Contributed by Jim Kingdon, 20-Oct-2024.) |
| ⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃)) & ⊢ (𝜑 → 𝑋 ∈ (2...(𝑃 − 1))) ⇒ ⊢ (𝜑 → ¬ 𝑋 ∥ 𝑃) | ||
| Theorem | isprm5 12335* | One need only check prime divisors of 𝑃 up to √𝑃 in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧 ∥ 𝑃))) | ||
| Theorem | divgcdodd 12336 | Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))) | ||
This section is about coprimality with respect to primes, and a special version of Euclid's lemma for primes is provided, see euclemma 12339. | ||
| Theorem | coprm 12337 | A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) | ||
| Theorem | prmrp 12338 | Unequal prime numbers are relatively prime. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃 ≠ 𝑄)) | ||
| Theorem | euclemma 12339 | Euclid's lemma. A prime number divides the product of two integers iff it divides at least one of them. Theorem 1.9 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ (𝑀 · 𝑁) ↔ (𝑃 ∥ 𝑀 ∨ 𝑃 ∥ 𝑁))) | ||
| Theorem | isprm6 12340* | A number is prime iff it satisfies Euclid's lemma euclemma 12339. (Contributed by Mario Carneiro, 6-Sep-2015.) |
| ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ (𝑃 ∥ (𝑥 · 𝑦) → (𝑃 ∥ 𝑥 ∨ 𝑃 ∥ 𝑦)))) | ||
| Theorem | prmdvdsexp 12341 | A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014.) (Revised by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴↑𝑁) ↔ 𝑃 ∥ 𝐴)) | ||
| Theorem | prmdvdsexpb 12342 | A prime divides a positive power of another iff they are equal. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 24-Feb-2014.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 = 𝑄)) | ||
| Theorem | prmdvdsexpr 12343 | If a prime divides a nonnegative power of another, then they are equal. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄)) | ||
| Theorem | prmexpb 12344 | Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012.) |
| ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃↑𝑀) = (𝑄↑𝑁) ↔ (𝑃 = 𝑄 ∧ 𝑀 = 𝑁))) | ||
| Theorem | prmfac1 12345 | The factorial of a number only contains primes less than the base. (Contributed by Mario Carneiro, 6-Mar-2014.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (!‘𝑁)) → 𝑃 ≤ 𝑁) | ||
| Theorem | rpexp 12346 | If two numbers 𝐴 and 𝐵 are relatively prime, then they are still relatively prime if raised to a power. (Contributed by Mario Carneiro, 24-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)) | ||
| Theorem | rpexp1i 12347 | Relative primality passes to asymmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd 𝐵) = 1)) | ||
| Theorem | rpexp12i 12348 | Relative primality passes to symmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑀) gcd (𝐵↑𝑁)) = 1)) | ||
| Theorem | prmndvdsfaclt 12349 | A prime number does not divide the factorial of a nonnegative integer less than the prime number. (Contributed by AV, 13-Jul-2021.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑁 < 𝑃 → ¬ 𝑃 ∥ (!‘𝑁))) | ||
| Theorem | cncongrprm 12350 | Corollary 2 of Cancellability of Congruences: Two products with a common factor are congruent modulo a prime number not dividing the common factor iff the other factors are congruent modulo the prime number. (Contributed by AV, 13-Jul-2021.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃))) | ||
| Theorem | isevengcd2 12351 | The predicate "is an even number". An even number and 2 have 2 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) (Revised by AV, 8-Aug-2021.) |
| ⊢ (𝑍 ∈ ℤ → (2 ∥ 𝑍 ↔ (2 gcd 𝑍) = 2)) | ||
| Theorem | isoddgcd1 12352 | The predicate "is an odd number". An odd number and 2 have 1 as greatest common divisor. (Contributed by AV, 1-Jul-2020.) (Revised by AV, 8-Aug-2021.) |
| ⊢ (𝑍 ∈ ℤ → (¬ 2 ∥ 𝑍 ↔ (2 gcd 𝑍) = 1)) | ||
| Theorem | 3lcm2e6 12353 | The least common multiple of three and two is six. The operands are unequal primes and thus coprime, so the result is (the absolute value of) their product. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 27-Aug-2020.) |
| ⊢ (3 lcm 2) = 6 | ||
| Theorem | sqrt2irrlem 12354 | Lemma for sqrt2irr 12355. This is the core of the proof: - if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) ⇒ ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) | ||
| Theorem | sqrt2irr 12355 |
The square root of 2 is not rational. That is, for any rational number,
(√‘2) does not equal it. However,
if we were to say "the
square root of 2 is irrational" that would mean something stronger:
"for any rational number, (√‘2)
is apart from it" (the two
statements are equivalent given excluded middle). See sqrt2irrap 12373 for
the proof that the square root of two is irrational.
The proof's core is proven in sqrt2irrlem 12354, which shows that if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (√‘2) ∉ ℚ | ||
| Theorem | sqrt2re 12356 | The square root of 2 exists and is a real number. (Contributed by NM, 3-Dec-2004.) |
| ⊢ (√‘2) ∈ ℝ | ||
| Theorem | sqrt2irr0 12357 | The square root of 2 is not rational. (Contributed by AV, 23-Dec-2022.) |
| ⊢ (√‘2) ∈ (ℝ ∖ ℚ) | ||
| Theorem | pw2dvdslemn 12358* | Lemma for pw2dvds 12359. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) | ||
| Theorem | pw2dvds 12359* | A natural number has a highest power of two which divides it. (Contributed by Jim Kingdon, 14-Nov-2021.) |
| ⊢ (𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) | ||
| Theorem | pw2dvdseulemle 12360 | Lemma for pw2dvdseu 12361. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) & ⊢ (𝜑 → (2↑𝐴) ∥ 𝑁) & ⊢ (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | pw2dvdseu 12361* | A natural number has a unique highest power of two which divides it. (Contributed by Jim Kingdon, 16-Nov-2021.) |
| ⊢ (𝑁 ∈ ℕ → ∃!𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) | ||
| Theorem | oddpwdclemxy 12362* | Lemma for oddpwdc 12367. Another way of stating that decomposing a natural number into a power of two and an odd number is unique. (Contributed by Jim Kingdon, 16-Nov-2021.) |
| ⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) | ||
| Theorem | oddpwdclemdvds 12363* | Lemma for oddpwdc 12367. A natural number is divisible by the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.) |
| ⊢ (𝐴 ∈ ℕ → (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴) | ||
| Theorem | oddpwdclemndvds 12364* | Lemma for oddpwdc 12367. A natural number is not divisible by one more than the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.) |
| ⊢ (𝐴 ∈ ℕ → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴) | ||
| Theorem | oddpwdclemodd 12365* | Lemma for oddpwdc 12367. Removing the powers of two from a natural number produces an odd number. (Contributed by Jim Kingdon, 16-Nov-2021.) |
| ⊢ (𝐴 ∈ ℕ → ¬ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) | ||
| Theorem | oddpwdclemdc 12366* | Lemma for oddpwdc 12367. Decomposing a number into odd and even parts. (Contributed by Jim Kingdon, 16-Nov-2021.) |
| ⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) ↔ (𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) | ||
| Theorem | oddpwdc 12367* | The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.) |
| ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) ⇒ ⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ | ||
| Theorem | sqpweven 12368* | The greatest power of two dividing the square of an integer is an even power of two. (Contributed by Jim Kingdon, 17-Nov-2021.) |
| ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) ⇒ ⊢ (𝐴 ∈ ℕ → 2 ∥ (2nd ‘(◡𝐹‘(𝐴↑2)))) | ||
| Theorem | 2sqpwodd 12369* | The greatest power of two dividing twice the square of an integer is an odd power of two. (Contributed by Jim Kingdon, 17-Nov-2021.) |
| ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) ⇒ ⊢ (𝐴 ∈ ℕ → ¬ 2 ∥ (2nd ‘(◡𝐹‘(2 · (𝐴↑2))))) | ||
| Theorem | sqne2sq 12370 | The square of a natural number can never be equal to two times the square of a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2))) | ||
| Theorem | znege1 12371 | The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) | ||
| Theorem | sqrt2irraplemnn 12372 | Lemma for sqrt2irrap 12373. The square root of 2 is apart from a positive rational expressed as a numerator and denominator. (Contributed by Jim Kingdon, 2-Oct-2021.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵)) | ||
| Theorem | sqrt2irrap 12373 | The square root of 2 is irrational. That is, for any rational number, (√‘2) is apart from it. In the absence of excluded middle, we can distinguish between this and "the square root of 2 is not rational" which is sqrt2irr 12355. (Contributed by Jim Kingdon, 2-Oct-2021.) |
| ⊢ (𝑄 ∈ ℚ → (√‘2) # 𝑄) | ||
| Syntax | cnumer 12374 | Extend class notation to include canonical numerator function. |
| class numer | ||
| Syntax | cdenom 12375 | Extend class notation to include canonical denominator function. |
| class denom | ||
| Definition | df-numer 12376* | The canonical numerator of a rational is the numerator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ numer = (𝑦 ∈ ℚ ↦ (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
| Definition | df-denom 12377* | The canonical denominator of a rational is the denominator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ denom = (𝑦 ∈ ℚ ↦ (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
| Theorem | qnumval 12378* | Value of the canonical numerator function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
| Theorem | qdenval 12379* | Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
| Theorem | qnumdencl 12380 | Lemma for qnumcl 12381 and qdencl 12382. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ)) | ||
| Theorem | qnumcl 12381 | The canonical numerator of a rational is an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | ||
| Theorem | qdencl 12382 | The canonical denominator is a positive integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | ||
| Theorem | fnum 12383 | Canonical numerator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ numer:ℚ⟶ℤ | ||
| Theorem | fden 12384 | Canonical denominator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ denom:ℚ⟶ℕ | ||
| Theorem | qnumdenbi 12385 | Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝐵 gcd 𝐶) = 1 ∧ 𝐴 = (𝐵 / 𝐶)) ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶))) | ||
| Theorem | qnumdencoprm 12386 | The canonical representation of a rational is fully reduced. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) | ||
| Theorem | qeqnumdivden 12387 | Recover a rational number from its canonical representation. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | ||
| Theorem | qmuldeneqnum 12388 | Multiplying a rational by its denominator results in an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → (𝐴 · (denom‘𝐴)) = (numer‘𝐴)) | ||
| Theorem | divnumden 12389 | Calculate the reduced form of a quotient using gcd. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))) | ||
| Theorem | divdenle 12390 | Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵) | ||
| Theorem | qnumgt0 12391 | A rational is positive iff its canonical numerator is. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → (0 < 𝐴 ↔ 0 < (numer‘𝐴))) | ||
| Theorem | qgt0numnn 12392 | A rational is positive iff its canonical numerator is a positive integer. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → (numer‘𝐴) ∈ ℕ) | ||
| Theorem | nn0gcdsq 12393 | Squaring commutes with GCD, in particular two coprime numbers have coprime squares. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2))) | ||
| Theorem | zgcdsq 12394 | nn0gcdsq 12393 extended to integers by symmetry. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2))) | ||
| Theorem | numdensq 12395 | Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))) | ||
| Theorem | numsq 12396 | Square commutes with canonical numerator. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → (numer‘(𝐴↑2)) = ((numer‘𝐴)↑2)) | ||
| Theorem | densq 12397 | Square commutes with canonical denominator. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)) | ||
| Theorem | qden1elz 12398 | A rational is an integer iff it has denominator 1. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) | ||
| Theorem | nn0sqrtelqelz 12399 | If a nonnegative integer has a rational square root, that root must be an integer. (Contributed by Jim Kingdon, 24-May-2022.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) | ||
| Theorem | nonsq 12400 | Any integer strictly between two adjacent squares has a non-rational square root. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
| ⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |