| Intuitionistic Logic Explorer Theorem List (p. 124 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dvds2ln 12301 | If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁)))) | ||
| Theorem | dvds2add 12302 | If an integer divides each of two other integers, it divides their sum. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 + 𝑁))) | ||
| Theorem | dvds2sub 12303 | If an integer divides each of two other integers, it divides their difference. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 − 𝑁))) | ||
| Theorem | dvds2subd 12304 | Deduction form of dvds2sub 12303. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑀) & ⊢ (𝜑 → 𝐾 ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∥ (𝑀 − 𝑁)) | ||
| Theorem | dvdstr 12305 | The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝐾 ∥ 𝑁)) | ||
| Theorem | dvds2addd 12306 | Deduction form of dvds2add 12302. (Contributed by SN, 21-Aug-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑀) & ⊢ (𝜑 → 𝐾 ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∥ (𝑀 + 𝑁)) | ||
| Theorem | dvdstrd 12307 | The divides relation is transitive, a deduction version of dvdstr 12305. (Contributed by metakunt, 12-May-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑀) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 ∥ 𝑁) | ||
| Theorem | dvdsmultr1 12308 | If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ 𝑀 → 𝐾 ∥ (𝑀 · 𝑁))) | ||
| Theorem | dvdsmultr1d 12309 | Natural deduction form of dvdsmultr1 12308. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∥ 𝑀) ⇒ ⊢ (𝜑 → 𝐾 ∥ (𝑀 · 𝑁)) | ||
| Theorem | dvdsmultr2 12310 | If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ 𝑁 → 𝐾 ∥ (𝑀 · 𝑁))) | ||
| Theorem | ordvdsmul 12311 | If an integer divides either of two others, it divides their product. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∨ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 · 𝑁))) | ||
| Theorem | dvdssub2 12312 | If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∥ (𝑀 − 𝑁)) → (𝐾 ∥ 𝑀 ↔ 𝐾 ∥ 𝑁)) | ||
| Theorem | dvdsadd 12313 | An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 13-Jul-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑀 + 𝑁))) | ||
| Theorem | dvdsaddr 12314 | An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑁 + 𝑀))) | ||
| Theorem | dvdssub 12315 | An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑀 − 𝑁))) | ||
| Theorem | dvdssubr 12316 | An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ 𝑀 ∥ (𝑁 − 𝑀))) | ||
| Theorem | dvdsadd2b 12317 | Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) | ||
| Theorem | dvdsaddre2b 12318 | Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 12317 only requiring 𝐵 to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶)) → (𝐴 ∥ 𝐵 ↔ 𝐴 ∥ (𝐶 + 𝐵))) | ||
| Theorem | fsumdvds 12319* | If every term in a sum is divisible by 𝑁, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑁 ∥ 𝐵) ⇒ ⊢ (𝜑 → 𝑁 ∥ Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | dvdslelemd 12320 | Lemma for dvdsle 12321. (Contributed by Jim Kingdon, 8-Nov-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑁 < 𝑀) ⇒ ⊢ (𝜑 → (𝐾 · 𝑀) ≠ 𝑁) | ||
| Theorem | dvdsle 12321 | The divisors of a positive integer are bounded by it. The proof does not use /. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 → 𝑀 ≤ 𝑁)) | ||
| Theorem | dvdsleabs 12322 | The divisors of a nonzero integer are bounded by its absolute value. Theorem 1.1(i) in [ApostolNT] p. 14 (comparison property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 ∥ 𝑁 → 𝑀 ≤ (abs‘𝑁))) | ||
| Theorem | dvdsleabs2 12323 | Transfer divisibility to an order constraint on absolute values. (Contributed by Stefan O'Rear, 24-Sep-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 ∥ 𝑁 → (abs‘𝑀) ≤ (abs‘𝑁))) | ||
| Theorem | dvdsabseq 12324 | If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.) |
| ⊢ ((𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀) → (abs‘𝑀) = (abs‘𝑁)) | ||
| Theorem | dvdseq 12325 | If two nonnegative integers divide each other, they must be equal. (Contributed by Mario Carneiro, 30-May-2014.) (Proof shortened by AV, 7-Aug-2021.) |
| ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ (𝑀 ∥ 𝑁 ∧ 𝑁 ∥ 𝑀)) → 𝑀 = 𝑁) | ||
| Theorem | divconjdvds 12326 | If a nonzero integer 𝑀 divides another integer 𝑁, the other integer 𝑁 divided by the nonzero integer 𝑀 (i.e. the divisor conjugate of 𝑁 to 𝑀) divides the other integer 𝑁. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.) |
| ⊢ ((𝑀 ∥ 𝑁 ∧ 𝑀 ≠ 0) → (𝑁 / 𝑀) ∥ 𝑁) | ||
| Theorem | dvdsdivcl 12327* | The complement of a divisor of 𝑁 is also a divisor of 𝑁. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝐴) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | ||
| Theorem | dvdsflip 12328* | An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.) |
| ⊢ 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} & ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝑁 / 𝑦)) ⇒ ⊢ (𝑁 ∈ ℕ → 𝐹:𝐴–1-1-onto→𝐴) | ||
| Theorem | dvdsssfz1 12329* | The set of divisors of a number is a subset of a finite set. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| ⊢ (𝐴 ∈ ℕ → {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴} ⊆ (1...𝐴)) | ||
| Theorem | dvds1 12330 | The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015.) |
| ⊢ (𝑀 ∈ ℕ0 → (𝑀 ∥ 1 ↔ 𝑀 = 1)) | ||
| Theorem | alzdvds 12331* | Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → (∀𝑥 ∈ ℤ 𝑥 ∥ 𝑁 ↔ 𝑁 = 0)) | ||
| Theorem | dvdsext 12332* | Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 = 𝐵 ↔ ∀𝑥 ∈ ℕ0 (𝐴 ∥ 𝑥 ↔ 𝐵 ∥ 𝑥))) | ||
| Theorem | fzm1ndvds 12333 | No number between 1 and 𝑀 − 1 divides 𝑀. (Contributed by Mario Carneiro, 24-Jan-2015.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (1...(𝑀 − 1))) → ¬ 𝑀 ∥ 𝑁) | ||
| Theorem | fzo0dvdseq 12334 | Zero is the only one of the first 𝐴 nonnegative integers that is divisible by 𝐴. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ (𝐵 ∈ (0..^𝐴) → (𝐴 ∥ 𝐵 ↔ 𝐵 = 0)) | ||
| Theorem | fzocongeq 12335 | Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ ((𝐴 ∈ (𝐶..^𝐷) ∧ 𝐵 ∈ (𝐶..^𝐷)) → ((𝐷 − 𝐶) ∥ (𝐴 − 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | addmodlteqALT 12336 | Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq 10587 based on the "divides" relation. (Contributed by AV, 14-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁) ∧ 𝑆 ∈ ℤ) → (((𝐼 + 𝑆) mod 𝑁) = ((𝐽 + 𝑆) mod 𝑁) ↔ 𝐼 = 𝐽)) | ||
| Theorem | dvdsfac 12337 | A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.) |
| ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝐾 ∥ (!‘𝑁)) | ||
| Theorem | dvdsexp 12338 | A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝐴↑𝑀) ∥ (𝐴↑𝑁)) | ||
| Theorem | dvdsmod 12339 | Any number 𝐾 whose mod base 𝑁 is divisible by a divisor 𝑃 of the base is also divisible by 𝑃. This means that primes will also be relatively prime to the base when reduced mod 𝑁 for any base. (Contributed by Mario Carneiro, 13-Mar-2014.) |
| ⊢ (((𝑃 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) ∧ 𝑃 ∥ 𝑁) → (𝑃 ∥ (𝐾 mod 𝑁) ↔ 𝑃 ∥ 𝐾)) | ||
| Theorem | mulmoddvds 12340 | If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁 ∥ 𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0)) | ||
| Theorem | 3dvds 12341* | A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.) (Revised by AV, 8-Sep-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(0...𝑁)⟶ℤ) → (3 ∥ Σ𝑘 ∈ (0...𝑁)((𝐹‘𝑘) · (;10↑𝑘)) ↔ 3 ∥ Σ𝑘 ∈ (0...𝑁)(𝐹‘𝑘))) | ||
| Theorem | 3dvdsdec 12342 | A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴 and 𝐵 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴 and 𝐵, especially if 𝐴 is itself a decimal number, e.g., 𝐴 = ;𝐶𝐷. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ (3 ∥ ;𝐴𝐵 ↔ 3 ∥ (𝐴 + 𝐵)) | ||
| Theorem | 3dvds2dec 12343 | A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if 𝐴, 𝐵 and 𝐶 actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers 𝐴, 𝐵 and 𝐶. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
| ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 ⇒ ⊢ (3 ∥ ;;𝐴𝐵𝐶 ↔ 3 ∥ ((𝐴 + 𝐵) + 𝐶)) | ||
The set ℤ of integers can be partitioned into the set of even numbers and the set of odd numbers, see zeo4 12347. Instead of defining new class variables Even and Odd to represent these sets, we use the idiom 2 ∥ 𝑁 to say that "𝑁 is even" (which implies 𝑁 ∈ ℤ, see evenelz 12344) and ¬ 2 ∥ 𝑁 to say that "𝑁 is odd" (under the assumption that 𝑁 ∈ ℤ). The previously proven theorems about even and odd numbers, like zneo 9516, zeo 9520, zeo2 9521, etc. use different representations, which are equivalent with the representations using the divides relation, see evend2 12366 and oddp1d2 12367. The corresponding theorems are zeneo 12348, zeo3 12345 and zeo4 12347. | ||
| Theorem | evenelz 12344 | An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 12269. (Contributed by AV, 22-Jun-2021.) |
| ⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) | ||
| Theorem | zeo3 12345 | An integer is even or odd. (Contributed by AV, 17-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)) | ||
| Theorem | zeoxor 12346 | An integer is even or odd but not both. (Contributed by Jim Kingdon, 10-Nov-2021.) |
| ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ⊻ ¬ 2 ∥ 𝑁)) | ||
| Theorem | zeo4 12347 | An integer is even or odd but not both. (Contributed by AV, 17-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ¬ ¬ 2 ∥ 𝑁)) | ||
| Theorem | zeneo 12348 | No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. This variant of zneo 9516 follows immediately from the fact that a contradiction implies anything, see pm2.21i 649. (Contributed by AV, 22-Jun-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → 𝐴 ≠ 𝐵)) | ||
| Theorem | odd2np1lem 12349* | Lemma for odd2np1 12350. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)) | ||
| Theorem | odd2np1 12350* | An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | ||
| Theorem | even2n 12351* | An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.) |
| ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) | ||
| Theorem | oddm1even 12352 | An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1))) | ||
| Theorem | oddp1even 12353 | An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1))) | ||
| Theorem | oexpneg 12354 | The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | ||
| Theorem | mod2eq0even 12355 | An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ 2 ∥ 𝑁)) | ||
| Theorem | mod2eq1n2dvds 12356 | An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁)) | ||
| Theorem | oddnn02np1 12357* | A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁)) | ||
| Theorem | oddge22np1 12358* | An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.) |
| ⊢ (𝑁 ∈ (ℤ≥‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁)) | ||
| Theorem | evennn02n 12359* | A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁)) | ||
| Theorem | evennn2n 12360* | A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.) |
| ⊢ (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁)) | ||
| Theorem | 2tp1odd 12361 | A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵) | ||
| Theorem | mulsucdiv2z 12362 | An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.) |
| ⊢ (𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ) | ||
| Theorem | sqoddm1div8z 12363 | A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (((𝑁↑2) − 1) / 8) ∈ ℤ) | ||
| Theorem | 2teven 12364 | A number which is twice an integer is even. (Contributed by AV, 16-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 = (2 · 𝐴)) → 2 ∥ 𝐵) | ||
| Theorem | zeo5 12365 | An integer is either even or odd, version of zeo3 12345 avoiding the negation of the representation of an odd number. (Proposed by BJ, 21-Jun-2021.) (Contributed by AV, 26-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ 2 ∥ (𝑁 + 1))) | ||
| Theorem | evend2 12366 | An integer is even iff its quotient with 2 is an integer. This is a representation of even numbers without using the divides relation, see zeo 9520 and zeo2 9521. (Contributed by AV, 22-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ)) | ||
| Theorem | oddp1d2 12367 | An integer is odd iff its successor divided by 2 is an integer. This is a representation of odd numbers without using the divides relation, see zeo 9520 and zeo2 9521. (Contributed by AV, 22-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) | ||
| Theorem | zob 12368 | Alternate characterizations of an odd number. (Contributed by AV, 7-Jun-2020.) |
| ⊢ (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ)) | ||
| Theorem | oddm1d2 12369 | An integer is odd iff its predecessor divided by 2 is an integer. This is another representation of odd numbers without using the divides relation. (Contributed by AV, 18-Jun-2021.) (Proof shortened by AV, 22-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℤ)) | ||
| Theorem | ltoddhalfle 12370 | An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))) | ||
| Theorem | halfleoddlt 12371 | An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁 ∧ 𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)) | ||
| Theorem | opoe 12372 | The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵)) | ||
| Theorem | omoe 12373 | The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 − 𝐵)) | ||
| Theorem | opeo 12374 | The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 + 𝐵)) | ||
| Theorem | omeo 12375 | The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 − 𝐵)) | ||
| Theorem | m1expe 12376 | Exponentiation of -1 by an even power. Variant of m1expeven 10775. (Contributed by AV, 25-Jun-2021.) |
| ⊢ (2 ∥ 𝑁 → (-1↑𝑁) = 1) | ||
| Theorem | m1expo 12377 | Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) | ||
| Theorem | m1exp1 12378 | Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.) |
| ⊢ (𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁)) | ||
| Theorem | nn0enne 12379 | A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ)) | ||
| Theorem | nn0ehalf 12380 | The half of an even nonnegative integer is a nonnegative integer. (Contributed by AV, 22-Jun-2020.) (Revised by AV, 28-Jun-2021.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ0) | ||
| Theorem | nnehalf 12381 | The half of an even positive integer is a positive integer. (Contributed by AV, 28-Jun-2021.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ) | ||
| Theorem | nn0o1gt2 12382 | An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁)) | ||
| Theorem | nno 12383 | An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ) | ||
| Theorem | nn0o 12384 | An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) | ||
| Theorem | nn0ob 12385 | Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
| Theorem | nn0oddm1d2 12386 | A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
| ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
| Theorem | nnoddm1d2 12387 | A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
| ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ)) | ||
| Theorem | z0even 12388 | 0 is even. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 23-Jun-2021.) |
| ⊢ 2 ∥ 0 | ||
| Theorem | n2dvds1 12389 | 2 does not divide 1 (common case). That means 1 is odd. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ¬ 2 ∥ 1 | ||
| Theorem | n2dvdsm1 12390 | 2 does not divide -1. That means -1 is odd. (Contributed by AV, 15-Aug-2021.) |
| ⊢ ¬ 2 ∥ -1 | ||
| Theorem | z2even 12391 | 2 is even. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 23-Jun-2021.) |
| ⊢ 2 ∥ 2 | ||
| Theorem | n2dvds3 12392 | 2 does not divide 3, i.e. 3 is an odd number. (Contributed by AV, 28-Feb-2021.) |
| ⊢ ¬ 2 ∥ 3 | ||
| Theorem | z4even 12393 | 4 is an even number. (Contributed by AV, 23-Jul-2020.) (Revised by AV, 4-Jul-2021.) |
| ⊢ 2 ∥ 4 | ||
| Theorem | 4dvdseven 12394 | An integer which is divisible by 4 is an even integer. (Contributed by AV, 4-Jul-2021.) |
| ⊢ (4 ∥ 𝑁 → 2 ∥ 𝑁) | ||
| Theorem | divalglemnn 12395* | Lemma for divalg 12401. Existence for a positive denominator. (Contributed by Jim Kingdon, 30-Nov-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) | ||
| Theorem | divalglemqt 12396 | Lemma for divalg 12401. The 𝑄 = 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.) |
| ⊢ (𝜑 → 𝐷 ∈ ℤ) & ⊢ (𝜑 → 𝑅 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℤ) & ⊢ (𝜑 → 𝑄 ∈ ℤ) & ⊢ (𝜑 → 𝑇 ∈ ℤ) & ⊢ (𝜑 → 𝑄 = 𝑇) & ⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) ⇒ ⊢ (𝜑 → 𝑅 = 𝑆) | ||
| Theorem | divalglemnqt 12397 | Lemma for divalg 12401. The 𝑄 < 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 4-Dec-2021.) |
| ⊢ (𝜑 → 𝐷 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ ℤ) & ⊢ (𝜑 → 𝑆 ∈ ℤ) & ⊢ (𝜑 → 𝑄 ∈ ℤ) & ⊢ (𝜑 → 𝑇 ∈ ℤ) & ⊢ (𝜑 → 0 ≤ 𝑆) & ⊢ (𝜑 → 𝑅 < 𝐷) & ⊢ (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆)) ⇒ ⊢ (𝜑 → ¬ 𝑄 < 𝑇) | ||
| Theorem | divalglemeunn 12398* | Lemma for divalg 12401. Uniqueness for a positive denominator. (Contributed by Jim Kingdon, 4-Dec-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) | ||
| Theorem | divalglemex 12399* | Lemma for divalg 12401. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) | ||
| Theorem | divalglemeuneg 12400* | Lemma for divalg 12401. Uniqueness for a negative denominator. (Contributed by Jim Kingdon, 4-Dec-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |