![]() |
Intuitionistic Logic Explorer Theorem List (p. 124 of 157) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 3lcm2e6 12301 | The least common multiple of three and two is six. The operands are unequal primes and thus coprime, so the result is (the absolute value of) their product. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 27-Aug-2020.) |
⊢ (3 lcm 2) = 6 | ||
Theorem | sqrt2irrlem 12302 | Lemma for sqrt2irr 12303. This is the core of the proof: - if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd by the method of infinite descent (here implemented by strong induction). (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 12-Sep-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → (√‘2) = (𝐴 / 𝐵)) ⇒ ⊢ (𝜑 → ((𝐴 / 2) ∈ ℤ ∧ (𝐵 / 2) ∈ ℕ)) | ||
Theorem | sqrt2irr 12303 |
The square root of 2 is not rational. That is, for any rational number,
(√‘2) does not equal it. However,
if we were to say "the
square root of 2 is irrational" that would mean something stronger:
"for any rational number, (√‘2)
is apart from it" (the two
statements are equivalent given excluded middle). See sqrt2irrap 12321 for
the proof that the square root of two is irrational.
The proof's core is proven in sqrt2irrlem 12302, which shows that if 𝐴 / 𝐵 = √(2), then 𝐴 and 𝐵 are even, so 𝐴 / 2 and 𝐵 / 2 are smaller representatives, which is absurd. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
⊢ (√‘2) ∉ ℚ | ||
Theorem | sqrt2re 12304 | The square root of 2 exists and is a real number. (Contributed by NM, 3-Dec-2004.) |
⊢ (√‘2) ∈ ℝ | ||
Theorem | sqrt2irr0 12305 | The square root of 2 is not rational. (Contributed by AV, 23-Dec-2022.) |
⊢ (√‘2) ∈ (ℝ ∖ ℚ) | ||
Theorem | pw2dvdslemn 12306* | Lemma for pw2dvds 12307. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) | ||
Theorem | pw2dvds 12307* | A natural number has a highest power of two which divides it. (Contributed by Jim Kingdon, 14-Nov-2021.) |
⊢ (𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) | ||
Theorem | pw2dvdseulemle 12308 | Lemma for pw2dvdseu 12309. Powers of two which do and do not divide a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) & ⊢ (𝜑 → (2↑𝐴) ∥ 𝑁) & ⊢ (𝜑 → ¬ (2↑(𝐵 + 1)) ∥ 𝑁) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
Theorem | pw2dvdseu 12309* | A natural number has a unique highest power of two which divides it. (Contributed by Jim Kingdon, 16-Nov-2021.) |
⊢ (𝑁 ∈ ℕ → ∃!𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) | ||
Theorem | oddpwdclemxy 12310* | Lemma for oddpwdc 12315. Another way of stating that decomposing a natural number into a power of two and an odd number is unique. (Contributed by Jim Kingdon, 16-Nov-2021.) |
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) → (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) | ||
Theorem | oddpwdclemdvds 12311* | Lemma for oddpwdc 12315. A natural number is divisible by the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.) |
⊢ (𝐴 ∈ ℕ → (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))) ∥ 𝐴) | ||
Theorem | oddpwdclemndvds 12312* | Lemma for oddpwdc 12315. A natural number is not divisible by one more than the highest power of two which divides it. (Contributed by Jim Kingdon, 17-Nov-2021.) |
⊢ (𝐴 ∈ ℕ → ¬ (2↑((℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)) + 1)) ∥ 𝐴) | ||
Theorem | oddpwdclemodd 12313* | Lemma for oddpwdc 12315. Removing the powers of two from a natural number produces an odd number. (Contributed by Jim Kingdon, 16-Nov-2021.) |
⊢ (𝐴 ∈ ℕ → ¬ 2 ∥ (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) | ||
Theorem | oddpwdclemdc 12314* | Lemma for oddpwdc 12315. Decomposing a number into odd and even parts. (Contributed by Jim Kingdon, 16-Nov-2021.) |
⊢ ((((𝑋 ∈ ℕ ∧ ¬ 2 ∥ 𝑋) ∧ 𝑌 ∈ ℕ0) ∧ 𝐴 = ((2↑𝑌) · 𝑋)) ↔ (𝐴 ∈ ℕ ∧ (𝑋 = (𝐴 / (2↑(℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴)))) ∧ 𝑌 = (℩𝑧 ∈ ℕ0 ((2↑𝑧) ∥ 𝐴 ∧ ¬ (2↑(𝑧 + 1)) ∥ 𝐴))))) | ||
Theorem | oddpwdc 12315* | The function 𝐹 that decomposes a number into its "odd" and "even" parts, which is to say the largest power of two and largest odd divisor of a number, is a bijection from pairs of a nonnegative integer and an odd number to positive integers. (Contributed by Thierry Arnoux, 15-Aug-2017.) |
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) ⇒ ⊢ 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ | ||
Theorem | sqpweven 12316* | The greatest power of two dividing the square of an integer is an even power of two. (Contributed by Jim Kingdon, 17-Nov-2021.) |
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) ⇒ ⊢ (𝐴 ∈ ℕ → 2 ∥ (2nd ‘(◡𝐹‘(𝐴↑2)))) | ||
Theorem | 2sqpwodd 12317* | The greatest power of two dividing twice the square of an integer is an odd power of two. (Contributed by Jim Kingdon, 17-Nov-2021.) |
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) ⇒ ⊢ (𝐴 ∈ ℕ → ¬ 2 ∥ (2nd ‘(◡𝐹‘(2 · (𝐴↑2))))) | ||
Theorem | sqne2sq 12318 | The square of a natural number can never be equal to two times the square of a natural number. (Contributed by Jim Kingdon, 17-Nov-2021.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴↑2) ≠ (2 · (𝐵↑2))) | ||
Theorem | znege1 12319 | The absolute value of the difference between two unequal integers is at least one. (Contributed by Jim Kingdon, 31-Jan-2022.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≠ 𝐵) → 1 ≤ (abs‘(𝐴 − 𝐵))) | ||
Theorem | sqrt2irraplemnn 12320 | Lemma for sqrt2irrap 12321. The square root of 2 is apart from a positive rational expressed as a numerator and denominator. (Contributed by Jim Kingdon, 2-Oct-2021.) |
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (√‘2) # (𝐴 / 𝐵)) | ||
Theorem | sqrt2irrap 12321 | The square root of 2 is irrational. That is, for any rational number, (√‘2) is apart from it. In the absence of excluded middle, we can distinguish between this and "the square root of 2 is not rational" which is sqrt2irr 12303. (Contributed by Jim Kingdon, 2-Oct-2021.) |
⊢ (𝑄 ∈ ℚ → (√‘2) # 𝑄) | ||
Syntax | cnumer 12322 | Extend class notation to include canonical numerator function. |
class numer | ||
Syntax | cdenom 12323 | Extend class notation to include canonical denominator function. |
class denom | ||
Definition | df-numer 12324* | The canonical numerator of a rational is the numerator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ numer = (𝑦 ∈ ℚ ↦ (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
Definition | df-denom 12325* | The canonical denominator of a rational is the denominator of the rational's reduced fraction representation (no common factors, denominator positive). (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ denom = (𝑦 ∈ ℚ ↦ (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
Theorem | qnumval 12326* | Value of the canonical numerator function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
Theorem | qdenval 12327* | Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑥 ∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝐴 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) | ||
Theorem | qnumdencl 12328 | Lemma for qnumcl 12329 and qdencl 12330. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ)) | ||
Theorem | qnumcl 12329 | The canonical numerator of a rational is an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (numer‘𝐴) ∈ ℤ) | ||
Theorem | qdencl 12330 | The canonical denominator is a positive integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (denom‘𝐴) ∈ ℕ) | ||
Theorem | fnum 12331 | Canonical numerator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ numer:ℚ⟶ℤ | ||
Theorem | fden 12332 | Canonical denominator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ denom:ℚ⟶ℕ | ||
Theorem | qnumdenbi 12333 | Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (((𝐵 gcd 𝐶) = 1 ∧ 𝐴 = (𝐵 / 𝐶)) ↔ ((numer‘𝐴) = 𝐵 ∧ (denom‘𝐴) = 𝐶))) | ||
Theorem | qnumdencoprm 12334 | The canonical representation of a rational is fully reduced. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) gcd (denom‘𝐴)) = 1) | ||
Theorem | qeqnumdivden 12335 | Recover a rational number from its canonical representation. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → 𝐴 = ((numer‘𝐴) / (denom‘𝐴))) | ||
Theorem | qmuldeneqnum 12336 | Multiplying a rational by its denominator results in an integer. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (𝐴 · (denom‘𝐴)) = (numer‘𝐴)) | ||
Theorem | divnumden 12337 | Calculate the reduced form of a quotient using gcd. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((numer‘(𝐴 / 𝐵)) = (𝐴 / (𝐴 gcd 𝐵)) ∧ (denom‘(𝐴 / 𝐵)) = (𝐵 / (𝐴 gcd 𝐵)))) | ||
Theorem | divdenle 12338 | Reducing a quotient never increases the denominator. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (denom‘(𝐴 / 𝐵)) ≤ 𝐵) | ||
Theorem | qnumgt0 12339 | A rational is positive iff its canonical numerator is. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (0 < 𝐴 ↔ 0 < (numer‘𝐴))) | ||
Theorem | qgt0numnn 12340 | A rational is positive iff its canonical numerator is a positive integer. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ ((𝐴 ∈ ℚ ∧ 0 < 𝐴) → (numer‘𝐴) ∈ ℕ) | ||
Theorem | nn0gcdsq 12341 | Squaring commutes with GCD, in particular two coprime numbers have coprime squares. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2))) | ||
Theorem | zgcdsq 12342 | nn0gcdsq 12341 extended to integers by symmetry. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵)↑2) = ((𝐴↑2) gcd (𝐵↑2))) | ||
Theorem | numdensq 12343 | Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → ((numer‘(𝐴↑2)) = ((numer‘𝐴)↑2) ∧ (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2))) | ||
Theorem | numsq 12344 | Square commutes with canonical numerator. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (numer‘(𝐴↑2)) = ((numer‘𝐴)↑2)) | ||
Theorem | densq 12345 | Square commutes with canonical denominator. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → (denom‘(𝐴↑2)) = ((denom‘𝐴)↑2)) | ||
Theorem | qden1elz 12346 | A rational is an integer iff it has denominator 1. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) | ||
Theorem | nn0sqrtelqelz 12347 | If a nonnegative integer has a rational square root, that root must be an integer. (Contributed by Jim Kingdon, 24-May-2022.) |
⊢ ((𝐴 ∈ ℕ0 ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) | ||
Theorem | nonsq 12348 | Any integer strictly between two adjacent squares has a non-rational square root. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) ∧ ((𝐵↑2) < 𝐴 ∧ 𝐴 < ((𝐵 + 1)↑2))) → ¬ (√‘𝐴) ∈ ℚ) | ||
Syntax | codz 12349 | Extend class notation with the order function on the class of integers modulo N. |
class odℤ | ||
Syntax | cphi 12350 | Extend class notation with the Euler phi function. |
class ϕ | ||
Definition | df-odz 12351* | Define the order function on the class of integers modulo N. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.) |
⊢ odℤ = (𝑛 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} ↦ inf({𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥↑𝑚) − 1)}, ℝ, < ))) | ||
Definition | df-phi 12352* | Define the Euler phi function (also called "Euler totient function"), which counts the number of integers less than 𝑛 and coprime to it, see definition in [ApostolNT] p. 25. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1})) | ||
Theorem | phivalfi 12353* | Finiteness of an expression used to define the Euler ϕ function. (Contributed by Jim Kingon, 28-May-2022.) |
⊢ (𝑁 ∈ ℕ → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ∈ Fin) | ||
Theorem | phival 12354* | Value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1})) | ||
Theorem | phicl2 12355 | Bounds and closure for the value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ (1...𝑁)) | ||
Theorem | phicl 12356 | Closure for the value of the Euler ϕ function. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ) | ||
Theorem | phibndlem 12357* | Lemma for phibnd 12358. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → {𝑥 ∈ (1...𝑁) ∣ (𝑥 gcd 𝑁) = 1} ⊆ (1...(𝑁 − 1))) | ||
Theorem | phibnd 12358 | A slightly tighter bound on the value of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (𝑁 ∈ (ℤ≥‘2) → (ϕ‘𝑁) ≤ (𝑁 − 1)) | ||
Theorem | phicld 12359 | Closure for the value of the Euler ϕ function. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (ϕ‘𝑁) ∈ ℕ) | ||
Theorem | phi1 12360 | Value of the Euler ϕ function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) |
⊢ (ϕ‘1) = 1 | ||
Theorem | dfphi2 12361* | Alternate definition of the Euler ϕ function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 2-May-2016.) |
⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})) | ||
Theorem | hashdvds 12362* | The number of numbers in a given residue class in a finite set of integers. (Contributed by Mario Carneiro, 12-Mar-2014.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘(𝐴 − 1))) & ⊢ (𝜑 → 𝐶 ∈ ℤ) ⇒ ⊢ (𝜑 → (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) = ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) | ||
Theorem | phiprmpw 12363 | Value of the Euler ϕ function at a prime power. Theorem 2.5(a) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ) → (ϕ‘(𝑃↑𝐾)) = ((𝑃↑(𝐾 − 1)) · (𝑃 − 1))) | ||
Theorem | phiprm 12364 | Value of the Euler ϕ function at a prime. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1)) | ||
Theorem | crth 12365* | The Chinese Remainder Theorem: the function that maps 𝑥 to its remainder classes mod 𝑀 and mod 𝑁 is 1-1 and onto when 𝑀 and 𝑁 are coprime. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-May-2016.) |
⊢ 𝑆 = (0..^(𝑀 · 𝑁)) & ⊢ 𝑇 = ((0..^𝑀) × (0..^𝑁)) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) ⇒ ⊢ (𝜑 → 𝐹:𝑆–1-1-onto→𝑇) | ||
Theorem | phimullem 12366* | Lemma for phimul 12367. (Contributed by Mario Carneiro, 24-Feb-2014.) |
⊢ 𝑆 = (0..^(𝑀 · 𝑁)) & ⊢ 𝑇 = ((0..^𝑀) × (0..^𝑁)) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ 〈(𝑥 mod 𝑀), (𝑥 mod 𝑁)〉) & ⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) & ⊢ 𝑈 = {𝑦 ∈ (0..^𝑀) ∣ (𝑦 gcd 𝑀) = 1} & ⊢ 𝑉 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ 𝑊 = {𝑦 ∈ 𝑆 ∣ (𝑦 gcd (𝑀 · 𝑁)) = 1} ⇒ ⊢ (𝜑 → (ϕ‘(𝑀 · 𝑁)) = ((ϕ‘𝑀) · (ϕ‘𝑁))) | ||
Theorem | phimul 12367 | The Euler ϕ function is a multiplicative function, meaning that it distributes over multiplication at relatively prime arguments. Theorem 2.5(c) in [ApostolNT] p. 28. (Contributed by Mario Carneiro, 24-Feb-2014.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (ϕ‘(𝑀 · 𝑁)) = ((ϕ‘𝑀) · (ϕ‘𝑁))) | ||
Theorem | eulerthlem1 12368* | Lemma for eulerth 12374. (Contributed by Mario Carneiro, 8-May-2015.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ 𝑇 = (1...(ϕ‘𝑁)) & ⊢ (𝜑 → 𝐹:𝑇–1-1-onto→𝑆) & ⊢ 𝐺 = (𝑥 ∈ 𝑇 ↦ ((𝐴 · (𝐹‘𝑥)) mod 𝑁)) ⇒ ⊢ (𝜑 → 𝐺:𝑇⟶𝑆) | ||
Theorem | eulerthlemfi 12369* | Lemma for eulerth 12374. The set 𝑆 is finite. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 7-Sep-2024.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} ⇒ ⊢ (𝜑 → 𝑆 ∈ Fin) | ||
Theorem | eulerthlemrprm 12370* | Lemma for eulerth 12374. 𝑁 and ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥) are relatively prime. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆) ⇒ ⊢ (𝜑 → (𝑁 gcd ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) = 1) | ||
Theorem | eulerthlema 12371* | Lemma for eulerth 12374. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆) ⇒ ⊢ (𝜑 → (((𝐴↑(ϕ‘𝑁)) · ∏𝑥 ∈ (1...(ϕ‘𝑁))(𝐹‘𝑥)) mod 𝑁) = (∏𝑥 ∈ (1...(ϕ‘𝑁))((𝐴 · (𝐹‘𝑥)) mod 𝑁) mod 𝑁)) | ||
Theorem | eulerthlemh 12372* | Lemma for eulerth 12374. A permutation of (1...(ϕ‘𝑁)). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 5-Sep-2024.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆) & ⊢ 𝐻 = (◡𝐹 ∘ (𝑦 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝐹‘𝑦)) mod 𝑁))) ⇒ ⊢ (𝜑 → 𝐻:(1...(ϕ‘𝑁))–1-1-onto→(1...(ϕ‘𝑁))) | ||
Theorem | eulerthlemth 12373* | Lemma for eulerth 12374. The result. (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by Jim Kingdon, 2-Sep-2024.) |
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) & ⊢ 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} & ⊢ (𝜑 → 𝐹:(1...(ϕ‘𝑁))–1-1-onto→𝑆) ⇒ ⊢ (𝜑 → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) | ||
Theorem | eulerth 12374 | Euler's theorem, a generalization of Fermat's little theorem. If 𝐴 and 𝑁 are coprime, then 𝐴↑ϕ(𝑁)≡1 (mod 𝑁). This is Metamath 100 proof #10. Also called Euler-Fermat theorem, see theorem 5.17 in [ApostolNT] p. 113. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) | ||
Theorem | fermltl 12375 | Fermat's little theorem. When 𝑃 is prime, 𝐴↑𝑃≡𝐴 (mod 𝑃) for any 𝐴, see theorem 5.19 in [ApostolNT] p. 114. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 19-Mar-2022.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑𝑃) mod 𝑃) = (𝐴 mod 𝑃)) | ||
Theorem | prmdiv 12376 | Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) | ||
Theorem | prmdiveq 12377 | The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅)) | ||
Theorem | prmdivdiv 12378 | The (modular) inverse of the inverse of a number is itself. (Contributed by Mario Carneiro, 24-Jan-2015.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (1...(𝑃 − 1))) → 𝐴 = ((𝑅↑(𝑃 − 2)) mod 𝑃)) | ||
Theorem | hashgcdlem 12379* | A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} & ⊢ 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁} & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝑥 · 𝑁)) ⇒ ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → 𝐹:𝐴–1-1-onto→𝐵) | ||
Theorem | hashgcdeq 12380* | Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁 ∥ 𝑀, (ϕ‘(𝑀 / 𝑁)), 0)) | ||
Theorem | phisum 12381* | The divisor sum identity of the totient function. Theorem 2.2 in [ApostolNT] p. 26. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
⊢ (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (ϕ‘𝑑) = 𝑁) | ||
Theorem | odzval 12382* | Value of the order function. This is a function of functions; the inner argument selects the base (i.e., mod 𝑁 for some 𝑁, often prime) and the outer argument selects the integer or equivalence class (if you want to think about it that way) from the integers mod 𝑁. In order to ensure the supremum is well-defined, we only define the expression when 𝐴 and 𝑁 are coprime. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) = inf({𝑛 ∈ ℕ ∣ 𝑁 ∥ ((𝐴↑𝑛) − 1)}, ℝ, < )) | ||
Theorem | odzcllem 12383 | - Lemma for odzcl 12384, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (((odℤ‘𝑁)‘𝐴) ∈ ℕ ∧ 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1))) | ||
Theorem | odzcl 12384 | The order of a group element is an integer. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) ∈ ℕ) | ||
Theorem | odzid 12385 | Any element raised to the power of its order is 1. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∥ ((𝐴↑((odℤ‘𝑁)‘𝐴)) − 1)) | ||
Theorem | odzdvds 12386 | The only powers of 𝐴 that are congruent to 1 are the multiples of the order of 𝐴. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝐾 ∈ ℕ0) → (𝑁 ∥ ((𝐴↑𝐾) − 1) ↔ ((odℤ‘𝑁)‘𝐴) ∥ 𝐾)) | ||
Theorem | odzphi 12387 | The order of any group element is a divisor of the Euler ϕ function. (Contributed by Mario Carneiro, 28-Feb-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((odℤ‘𝑁)‘𝐴) ∥ (ϕ‘𝑁)) | ||
Theorem | modprm1div 12388 | A prime number divides an integer minus 1 iff the integer modulo the prime number is 1. (Contributed by Alexander van der Vekens, 17-May-2018.) (Proof shortened by AV, 30-May-2023.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑃) = 1 ↔ 𝑃 ∥ (𝐴 − 1))) | ||
Theorem | m1dvdsndvds 12389 | If an integer minus 1 is divisible by a prime number, the integer itself is not divisible by this prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ¬ 𝑃 ∥ 𝐴)) | ||
Theorem | modprminv 12390 | Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. This is an application of prmdiv 12376. (Contributed by Alexander van der Vekens, 15-May-2018.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · 𝑅) mod 𝑃) = 1)) | ||
Theorem | modprminveq 12391 | The modular inverse of 𝐴 mod 𝑃 is unique. (Contributed by Alexander van der Vekens, 17-May-2018.) |
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) ⇒ ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ ((𝐴 · 𝑆) mod 𝑃) = 1) ↔ 𝑆 = 𝑅)) | ||
Theorem | vfermltl 12392 | Variant of Fermat's little theorem if 𝐴 is not a multiple of 𝑃, see theorem 5.18 in [ApostolNT] p. 113. (Contributed by AV, 21-Aug-2020.) (Proof shortened by AV, 5-Sep-2020.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴) → ((𝐴↑(𝑃 − 1)) mod 𝑃) = 1) | ||
Theorem | powm2modprm 12393 | If an integer minus 1 is divisible by a prime number, then the integer to the power of the prime number minus 2 is 1 modulo the prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1)) | ||
Theorem | reumodprminv 12394* | For any prime number and for any positive integer less than this prime number, there is a unique modular inverse of this positive integer. (Contributed by Alexander van der Vekens, 12-May-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃)) → ∃!𝑖 ∈ (1...(𝑃 − 1))((𝑁 · 𝑖) mod 𝑃) = 1) | ||
Theorem | modprm0 12395* | For two positive integers less than a given prime number there is always a nonnegative integer (less than the given prime number) so that the sum of one of the two positive integers and the other of the positive integers multiplied by the nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 17-May-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (1..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0) | ||
Theorem | nnnn0modprm0 12396* | For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ (1..^𝑃) ∧ 𝐼 ∈ (0..^𝑃)) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0) | ||
Theorem | modprmn0modprm0 12397* | For an integer not being 0 modulo a given prime number and a nonnegative integer less than the prime number, there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 10-Nov-2018.) |
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ (𝑁 mod 𝑃) ≠ 0) → (𝐼 ∈ (0..^𝑃) → ∃𝑗 ∈ (0..^𝑃)((𝐼 + (𝑗 · 𝑁)) mod 𝑃) = 0)) | ||
Theorem | coprimeprodsq 12398 | If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2))) | ||
Theorem | coprimeprodsq2 12399 | If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐵 = ((𝐵 gcd 𝐶)↑2))) | ||
Theorem | oddprm 12400 | A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.) |
⊢ (𝑁 ∈ (ℙ ∖ {2}) → ((𝑁 − 1) / 2) ∈ ℕ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |