HomeHome Intuitionistic Logic Explorer
Theorem List (p. 124 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12301-12400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelgz 12301 Elementhood in the gaussian integers. (Contributed by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ))
 
Theoremgzcn 12302 A gaussian integer is a complex number. (Contributed by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ)
 
Theoremzgz 12303 An integer is a gaussian integer. (Contributed by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℤ → 𝐴 ∈ ℤ[i])
 
Theoremigz 12304 i is a gaussian integer. (Contributed by Mario Carneiro, 14-Jul-2014.)
i ∈ ℤ[i]
 
Theoremgznegcl 12305 The gaussian integers are closed under negation. (Contributed by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℤ[i] → -𝐴 ∈ ℤ[i])
 
Theoremgzcjcl 12306 The gaussian integers are closed under conjugation. (Contributed by Mario Carneiro, 14-Jul-2014.)
(𝐴 ∈ ℤ[i] → (∗‘𝐴) ∈ ℤ[i])
 
Theoremgzaddcl 12307 The gaussian integers are closed under addition. (Contributed by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 + 𝐵) ∈ ℤ[i])
 
Theoremgzmulcl 12308 The gaussian integers are closed under multiplication. (Contributed by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴 · 𝐵) ∈ ℤ[i])
 
Theoremgzreim 12309 Construct a gaussian integer from real and imaginary parts. (Contributed by Mario Carneiro, 16-Jul-2014.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + (i · 𝐵)) ∈ ℤ[i])
 
Theoremgzsubcl 12310 The gaussian integers are closed under subtraction. (Contributed by Mario Carneiro, 14-Jul-2014.)
((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (𝐴𝐵) ∈ ℤ[i])
 
Theoremgzabssqcl 12311 The squared norm of a gaussian integer is an integer. (Contributed by Mario Carneiro, 16-Jul-2014.)
(𝐴 ∈ ℤ[i] → ((abs‘𝐴)↑2) ∈ ℕ0)
 
Theorem4sqlem5 12312 Lemma for 4sq (not yet proved here). (Contributed by Mario Carneiro, 15-Jul-2014.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝑀 ∈ ℕ)    &   𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))       (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
 
Theorem4sqlem6 12313 Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝑀 ∈ ℕ)    &   𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))       (𝜑 → (-(𝑀 / 2) ≤ 𝐵𝐵 < (𝑀 / 2)))
 
Theorem4sqlem7 12314 Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝑀 ∈ ℕ)    &   𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))       (𝜑 → (𝐵↑2) ≤ (((𝑀↑2) / 2) / 2))
 
Theorem4sqlem8 12315 Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝑀 ∈ ℕ)    &   𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))       (𝜑𝑀 ∥ ((𝐴↑2) − (𝐵↑2)))
 
Theorem4sqlem9 12316 Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝑀 ∈ ℕ)    &   𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   ((𝜑𝜓) → (𝐵↑2) = 0)       ((𝜑𝜓) → (𝑀↑2) ∥ (𝐴↑2))
 
Theorem4sqlem10 12317 Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 16-Jul-2014.)
(𝜑𝐴 ∈ ℤ)    &   (𝜑𝑀 ∈ ℕ)    &   𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))    &   ((𝜑𝜓) → ((((𝑀↑2) / 2) / 2) − (𝐵↑2)) = 0)       ((𝜑𝜓) → (𝑀↑2) ∥ ((𝐴↑2) − (((𝑀↑2) / 2) / 2)))
 
Theorem4sqlem1 12318* Lemma for 4sq (not yet proved here) . The set 𝑆 is the set of all numbers that are expressible as a sum of four squares. Our goal is to show that 𝑆 = ℕ0; here we show one subset direction. (Contributed by Mario Carneiro, 14-Jul-2014.)
𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}       𝑆 ⊆ ℕ0
 
Theorem4sqlem2 12319* Lemma for 4sq (not yet proved here) . Change bound variables in 𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.)
𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}       (𝐴𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ 𝐴 = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
 
Theorem4sqlem3 12320* Lemma for 4sq (not yet proved here) . Sufficient condition to be in 𝑆. (Contributed by Mario Carneiro, 14-Jul-2014.)
𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}       (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))) ∈ 𝑆)
 
Theorem4sqlem4a 12321* Lemma for 4sqlem4 12322. (Contributed by Mario Carneiro, 14-Jul-2014.)
𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}       ((𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i]) → (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2)) ∈ 𝑆)
 
Theorem4sqlem4 12322* Lemma for 4sq (not yet proved here) . We can express the four-square property more compactly in terms of gaussian integers, because the norms of gaussian integers are exactly sums of two squares. (Contributed by Mario Carneiro, 14-Jul-2014.)
𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}       (𝐴𝑆 ↔ ∃𝑢 ∈ ℤ[i] ∃𝑣 ∈ ℤ[i] 𝐴 = (((abs‘𝑢)↑2) + ((abs‘𝑣)↑2)))
 
Theoremmul4sqlem 12323* Lemma for mul4sq 12324: algebraic manipulations. The extra assumptions involving 𝑀 would let us know not just that the product is a sum of squares, but also that it preserves divisibility by 𝑀. (Contributed by Mario Carneiro, 14-Jul-2014.)
𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}    &   (𝜑𝐴 ∈ ℤ[i])    &   (𝜑𝐵 ∈ ℤ[i])    &   (𝜑𝐶 ∈ ℤ[i])    &   (𝜑𝐷 ∈ ℤ[i])    &   𝑋 = (((abs‘𝐴)↑2) + ((abs‘𝐵)↑2))    &   𝑌 = (((abs‘𝐶)↑2) + ((abs‘𝐷)↑2))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑 → ((𝐴𝐶) / 𝑀) ∈ ℤ[i])    &   (𝜑 → ((𝐵𝐷) / 𝑀) ∈ ℤ[i])    &   (𝜑 → (𝑋 / 𝑀) ∈ ℕ0)       (𝜑 → ((𝑋 / 𝑀) · (𝑌 / 𝑀)) ∈ 𝑆)
 
Theoremmul4sq 12324* Euler's four-square identity: The product of two sums of four squares is also a sum of four squares. This is usually quoted as an explicit formula involving eight real variables; we save some time by working with complex numbers (gaussian integers) instead, so that we only have to work with four variables, and also hiding the actual formula for the product in the proof of mul4sqlem 12323. (For the curious, the explicit formula that is used is ( ∣ 𝑎 ∣ ↑2 + ∣ 𝑏 ∣ ↑2)( ∣ 𝑐 ∣ ↑2 + ∣ 𝑑 ∣ ↑2) = 𝑎∗ · 𝑐 + 𝑏 · 𝑑∗ ∣ ↑2 + ∣ 𝑎∗ · 𝑑𝑏 · 𝑐∗ ∣ ↑2.) (Contributed by Mario Carneiro, 14-Jul-2014.)
𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}       ((𝐴𝑆𝐵𝑆) → (𝐴 · 𝐵) ∈ 𝑆)
 
5.3  Cardinality of real and complex number subsets
 
5.3.1  Countability of integers and rationals
 
Theoremoddennn 12325 There are as many odd positive integers as there are positive integers. (Contributed by Jim Kingdon, 11-May-2022.)
{𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ≈ ℕ
 
Theoremevenennn 12326 There are as many even positive integers as there are positive integers. (Contributed by Jim Kingdon, 12-May-2022.)
{𝑧 ∈ ℕ ∣ 2 ∥ 𝑧} ≈ ℕ
 
Theoremxpnnen 12327 The Cartesian product of the set of positive integers with itself is equinumerous to the set of positive integers. (Contributed by NM, 1-Aug-2004.)
(ℕ × ℕ) ≈ ℕ
 
Theoremxpomen 12328 The Cartesian product of omega (the set of ordinal natural numbers) with itself is equinumerous to omega. Exercise 1 of [Enderton] p. 133. (Contributed by NM, 23-Jul-2004.)
(ω × ω) ≈ ω
 
Theoremxpct 12329 The cartesian product of two sets dominated by ω is dominated by ω. (Contributed by Thierry Arnoux, 24-Sep-2017.)
((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 × 𝐵) ≼ ω)
 
Theoremunennn 12330 The union of two disjoint countably infinite sets is countably infinite. (Contributed by Jim Kingdon, 13-May-2022.)
((𝐴 ≈ ℕ ∧ 𝐵 ≈ ℕ ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ ℕ)
 
Theoremznnen 12331 The set of integers and the set of positive integers are equinumerous. Corollary 8.1.23 of [AczelRathjen], p. 75. (Contributed by NM, 31-Jul-2004.)
ℤ ≈ ℕ
 
Theoremennnfonelemdc 12332* Lemma for ennnfone 12358. A direct consequence of fidcenumlemrk 6919. (Contributed by Jim Kingdon, 15-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑𝑃 ∈ ω)       (𝜑DECID (𝐹𝑃) ∈ (𝐹𝑃))
 
Theoremennnfonelemk 12333* Lemma for ennnfone 12358. (Contributed by Jim Kingdon, 15-Jul-2023.)
(𝜑𝐹:ω–onto𝐴)    &   (𝜑𝐾 ∈ ω)    &   (𝜑𝑁 ∈ ω)    &   (𝜑 → ∀𝑗 ∈ suc 𝑁(𝐹𝐾) ≠ (𝐹𝑗))       (𝜑𝑁𝐾)
 
Theoremennnfonelemj0 12334* Lemma for ennnfone 12358. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
 
Theoremennnfonelemjn 12335* Lemma for ennnfone 12358. Non-initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       ((𝜑𝑓 ∈ (ℤ‘(0 + 1))) → (𝐽𝑓) ∈ ω)
 
Theoremennnfonelemg 12336* Lemma for ennnfone 12358. Closure for 𝐺. (Contributed by Jim Kingdon, 20-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
 
Theoremennnfonelemh 12337* Lemma for ennnfone 12358. (Contributed by Jim Kingdon, 8-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       (𝜑𝐻:ℕ0⟶(𝐴pm ω))
 
Theoremennnfonelem0 12338* Lemma for ennnfone 12358. Initial value. (Contributed by Jim Kingdon, 15-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       (𝜑 → (𝐻‘0) = ∅)
 
Theoremennnfonelemp1 12339* Lemma for ennnfone 12358. Value of 𝐻 at a successor. (Contributed by Jim Kingdon, 23-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → (𝐻‘(𝑃 + 1)) = if((𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)), (𝐻𝑃), ((𝐻𝑃) ∪ {⟨dom (𝐻𝑃), (𝐹‘(𝑁𝑃))⟩})))
 
Theoremennnfonelem1 12340* Lemma for ennnfone 12358. Second value. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)       (𝜑 → (𝐻‘1) = {⟨∅, (𝐹‘∅)⟩})
 
Theoremennnfonelemom 12341* Lemma for ennnfone 12358. 𝐻 yields finite sequences. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → dom (𝐻𝑃) ∈ ω)
 
Theoremennnfonelemhdmp1 12342* Lemma for ennnfone 12358. Domain at a successor where we need to add an element to the sequence. (Contributed by Jim Kingdon, 23-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)    &   (𝜑 → ¬ (𝐹‘(𝑁𝑃)) ∈ (𝐹 “ (𝑁𝑃)))       (𝜑 → dom (𝐻‘(𝑃 + 1)) = suc dom (𝐻𝑃))
 
Theoremennnfonelemss 12343* Lemma for ennnfone 12358. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 15-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → (𝐻𝑃) ⊆ (𝐻‘(𝑃 + 1)))
 
Theoremennnfoneleminc 12344* Lemma for ennnfone 12358. We only add elements to 𝐻 as the index increases. (Contributed by Jim Kingdon, 21-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)    &   (𝜑𝑄 ∈ ℕ0)    &   (𝜑𝑃𝑄)       (𝜑 → (𝐻𝑃) ⊆ (𝐻𝑄))
 
Theoremennnfonelemkh 12345* Lemma for ennnfone 12358. Because we add zero or one entries for each new index, the length of each sequence is no greater than its index. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → dom (𝐻𝑃) ⊆ (𝑁𝑃))
 
Theoremennnfonelemhf1o 12346* Lemma for ennnfone 12358. Each of the functions in 𝐻 is one to one and onto an image of 𝐹. (Contributed by Jim Kingdon, 17-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → (𝐻𝑃):dom (𝐻𝑃)–1-1-onto→(𝐹 “ (𝑁𝑃)))
 
Theoremennnfonelemex 12347* Lemma for ennnfone 12358. Extending the sequence (𝐻𝑃) to include an additional element. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑃 ∈ ℕ0)       (𝜑 → ∃𝑖 ∈ ℕ0 dom (𝐻𝑃) ∈ dom (𝐻𝑖))
 
Theoremennnfonelemhom 12348* Lemma for ennnfone 12358. The sequences in 𝐻 increase in length without bound if you go out far enough. (Contributed by Jim Kingdon, 19-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑀 ∈ ω)       (𝜑 → ∃𝑖 ∈ ℕ0 𝑀 ∈ dom (𝐻𝑖))
 
Theoremennnfonelemrnh 12349* Lemma for ennnfone 12358. A consequence of ennnfonelemss 12343. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   (𝜑𝑋 ∈ ran 𝐻)    &   (𝜑𝑌 ∈ ran 𝐻)       (𝜑 → (𝑋𝑌𝑌𝑋))
 
Theoremennnfonelemfun 12350* Lemma for ennnfone 12358. 𝐿 is a function. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑 → Fun 𝐿)
 
Theoremennnfonelemf1 12351* Lemma for ennnfone 12358. 𝐿 is one-to-one. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑𝐿:dom 𝐿1-1𝐴)
 
Theoremennnfonelemrn 12352* Lemma for ennnfone 12358. 𝐿 is onto 𝐴. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑 → ran 𝐿 = 𝐴)
 
Theoremennnfonelemdm 12353* Lemma for ennnfone 12358. The function 𝐿 is defined everywhere. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑 → dom 𝐿 = ω)
 
Theoremennnfonelemen 12354* Lemma for ennnfone 12358. The result. (Contributed by Jim Kingdon, 16-Jul-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))    &   𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))    &   𝐻 = seq0(𝐺, 𝐽)    &   𝐿 = 𝑖 ∈ ℕ0 (𝐻𝑖)       (𝜑𝐴 ≈ ℕ)
 
Theoremennnfonelemnn0 12355* Lemma for ennnfone 12358. A version of ennnfonelemen 12354 expressed in terms of 0 instead of ω. (Contributed by Jim Kingdon, 27-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ℕ0onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))    &   𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)       (𝜑𝐴 ≈ ℕ)
 
Theoremennnfonelemr 12356* Lemma for ennnfone 12358. The interesting direction, expressed in deduction form. (Contributed by Jim Kingdon, 27-Oct-2022.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑𝐹:ℕ0onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝐹𝑘) ≠ (𝐹𝑗))       (𝜑𝐴 ≈ ℕ)
 
Theoremennnfonelemim 12357* Lemma for ennnfone 12358. The trivial direction. (Contributed by Jim Kingdon, 27-Oct-2022.)
(𝐴 ≈ ℕ → (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
 
Theoremennnfone 12358* A condition for a set being countably infinite. Corollary 8.1.13 of [AczelRathjen], p. 73. Roughly speaking, the condition says that 𝐴 is countable (that's the 𝑓:ℕ0onto𝐴 part, as seen in theorems like ctm 7074), infinite (that's the part about being able to find an element of 𝐴 distinct from any mapping of a natural number via 𝑓), and has decidable equality. (Contributed by Jim Kingdon, 27-Oct-2022.)
(𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ℕ0onto𝐴 ∧ ∀𝑛 ∈ ℕ0𝑘 ∈ ℕ0𝑗 ∈ (0...𝑛)(𝑓𝑘) ≠ (𝑓𝑗))))
 
Theoremexmidunben 12359* If any unbounded set of positive integers is equinumerous to , then the Limited Principle of Omniscience (LPO) implies excluded middle. (Contributed by Jim Kingdon, 29-Jul-2023.)
((∀𝑥((𝑥 ⊆ ℕ ∧ ∀𝑚 ∈ ℕ ∃𝑛𝑥 𝑚 < 𝑛) → 𝑥 ≈ ℕ) ∧ ω ∈ Omni) → EXMID)
 
Theoremctinfomlemom 12360* Lemma for ctinfom 12361. Converting between ω and 0. (Contributed by Jim Kingdon, 10-Aug-2023.)
𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)    &   𝐺 = (𝐹𝑁)    &   (𝜑𝐹:ω–onto𝐴)    &   (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝐹𝑘) ∈ (𝐹𝑛))       (𝜑 → (𝐺:ℕ0onto𝐴 ∧ ∀𝑚 ∈ ℕ0𝑗 ∈ ℕ0𝑖 ∈ (0...𝑚)(𝐺𝑗) ≠ (𝐺𝑖)))
 
Theoremctinfom 12361* A condition for a set being countably infinite. Restates ennnfone 12358 in terms of ω and function image. Like ennnfone 12358 the condition can be summarized as 𝐴 being countable, infinite, and having decidable equality. (Contributed by Jim Kingdon, 7-Aug-2023.)
(𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓(𝑓:ω–onto𝐴 ∧ ∀𝑛 ∈ ω ∃𝑘 ∈ ω ¬ (𝑓𝑘) ∈ (𝑓𝑛))))
 
Theoreminffinp1 12362* An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.)
(𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)    &   (𝜑 → ω ≼ 𝐴)    &   (𝜑𝐵𝐴)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → ∃𝑥𝐴 ¬ 𝑥𝐵)
 
Theoremctinf 12363* A set is countably infinite if and only if it has decidable equality, is countable, and is infinite. (Contributed by Jim Kingdon, 7-Aug-2023.)
(𝐴 ≈ ℕ ↔ (∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦 ∧ ∃𝑓 𝑓:ω–onto𝐴 ∧ ω ≼ 𝐴))
 
Theoremqnnen 12364 The rational numbers are countably infinite. Corollary 8.1.23 of [AczelRathjen], p. 75. This is Metamath 100 proof #3. (Contributed by Jim Kingdon, 11-Aug-2023.)
ℚ ≈ ℕ
 
Theoremenctlem 12365* Lemma for enct 12366. One direction of the biconditional. (Contributed by Jim Kingdon, 23-Dec-2023.)
(𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
 
Theoremenct 12366* Countability is invariant relative to equinumerosity. (Contributed by Jim Kingdon, 23-Dec-2023.)
(𝐴𝐵 → (∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)))
 
Theoremctiunctlemu1st 12367* Lemma for ctiunct 12373. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}    &   (𝜑𝑁𝑈)       (𝜑 → (1st ‘(𝐽𝑁)) ∈ 𝑆)
 
Theoremctiunctlemu2nd 12368* Lemma for ctiunct 12373. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}    &   (𝜑𝑁𝑈)       (𝜑 → (2nd ‘(𝐽𝑁)) ∈ (𝐹‘(1st ‘(𝐽𝑁))) / 𝑥𝑇)
 
Theoremctiunctlemuom 12369 Lemma for ctiunct 12373. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}       (𝜑𝑈 ⊆ ω)
 
Theoremctiunctlemudc 12370* Lemma for ctiunct 12373. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}       (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑈)
 
Theoremctiunctlemf 12371* Lemma for ctiunct 12373. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}    &   𝐻 = (𝑛𝑈 ↦ ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))))       (𝜑𝐻:𝑈 𝑥𝐴 𝐵)
 
Theoremctiunctlemfo 12372* Lemma for ctiunct 12373. (Contributed by Jim Kingdon, 28-Oct-2023.)
(𝜑𝑆 ⊆ ω)    &   (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)    &   (𝜑𝐹:𝑆onto𝐴)    &   ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)    &   ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)    &   ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)    &   (𝜑𝐽:ω–1-1-onto→(ω × ω))    &   𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}    &   𝐻 = (𝑛𝑈 ↦ ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))))    &   𝑥𝐻    &   𝑥𝑈       (𝜑𝐻:𝑈onto 𝑥𝐴 𝐵)
 
Theoremctiunct 12373* A sequence of enumerations gives an enumeration of the union. We refer to "sequence of enumerations" rather than "countably many countable sets" because the hypothesis provides more than countability for each 𝐵(𝑥): it refers to 𝐵(𝑥) together with the 𝐺(𝑥) which enumerates it. Theorem 8.1.19 of [AczelRathjen], p. 74.

For "countably many countable sets" the key hypothesis would be (𝜑𝑥𝐴) → ∃𝑔𝑔:ω–onto→(𝐵 ⊔ 1o). This is almost omiunct 12377 (which uses countable choice) although that is for a countably infinite collection not any countable collection.

Compare with the case of two sets instead of countably many, as seen at unct 12375, which says that the union of two countable sets is countable .

The proof proceeds by mapping a natural number to a pair of natural numbers (by xpomen 12328) and using the first number to map to an element 𝑥 of 𝐴 and the second number to map to an element of B(x) . In this way we are able to map to every element of 𝑥𝐴𝐵. Although it would be possible to work directly with countability expressed as 𝐹:ω–onto→(𝐴 ⊔ 1o), we instead use functions from subsets of the natural numbers via ctssdccl 7076 and ctssdc 7078.

(Contributed by Jim Kingdon, 31-Oct-2023.)

(𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))    &   ((𝜑𝑥𝐴) → 𝐺:ω–onto→(𝐵 ⊔ 1o))       (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
 
Theoremctiunctal 12374* Variation of ctiunct 12373 which allows 𝑥 to be present in 𝜑. (Contributed by Jim Kingdon, 5-May-2024.)
(𝜑𝐹:ω–onto→(𝐴 ⊔ 1o))    &   (𝜑 → ∀𝑥𝐴 𝐺:ω–onto→(𝐵 ⊔ 1o))       (𝜑 → ∃ :ω–onto→( 𝑥𝐴 𝐵 ⊔ 1o))
 
Theoremunct 12375* The union of two countable sets is countable. Corollary 8.1.20 of [AczelRathjen], p. 75. (Contributed by Jim Kingdon, 1-Nov-2023.)
((∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o) ∧ ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o)) → ∃ :ω–onto→((𝐴𝐵) ⊔ 1o))
 
Theoremomctfn 12376* Using countable choice to find a sequence of enumerations for a collection of countable sets. Lemma 8.1.27 of [AczelRathjen], p. 77. (Contributed by Jim Kingdon, 19-Apr-2024.)
(𝜑CCHOICE)    &   ((𝜑𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))       (𝜑 → ∃𝑓(𝑓 Fn ω ∧ ∀𝑥 ∈ ω (𝑓𝑥):ω–onto→(𝐵 ⊔ 1o)))
 
Theoremomiunct 12377* The union of a countably infinite collection of countable sets is countable. Theorem 8.1.28 of [AczelRathjen], p. 78. Compare with ctiunct 12373 which has a stronger hypothesis but does not require countable choice. (Contributed by Jim Kingdon, 5-May-2024.)
(𝜑CCHOICE)    &   ((𝜑𝑥 ∈ ω) → ∃𝑔 𝑔:ω–onto→(𝐵 ⊔ 1o))       (𝜑 → ∃ :ω–onto→( 𝑥 ∈ ω 𝐵 ⊔ 1o))
 
Theoremssomct 12378* A decidable subset of ω is countable. (Contributed by Jim Kingdon, 19-Sep-2024.)
((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
 
Theoremssnnctlemct 12379* Lemma for ssnnct 12380. The result. (Contributed by Jim Kingdon, 29-Sep-2024.)
𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 1)       ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
 
Theoremssnnct 12380* A decidable subset of is countable. (Contributed by Jim Kingdon, 29-Sep-2024.)
((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴) → ∃𝑓 𝑓:ω–onto→(𝐴 ⊔ 1o))
 
Theoremnninfdclemcl 12381* Lemma for nninfdc 12386. (Contributed by Jim Kingdon, 25-Sep-2024.)
(𝜑𝐴 ⊆ ℕ)    &   (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)    &   (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)    &   (𝜑𝑃𝐴)    &   (𝜑𝑄𝐴)       (𝜑 → (𝑃(𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < ))𝑄) ∈ 𝐴)
 
Theoremnninfdclemf 12382* Lemma for nninfdc 12386. A function from the natural numbers into 𝐴. (Contributed by Jim Kingdon, 23-Sep-2024.)
(𝜑𝐴 ⊆ ℕ)    &   (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)    &   (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)    &   (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))    &   𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))       (𝜑𝐹:ℕ⟶𝐴)
 
Theoremnninfdclemp1 12383* Lemma for nninfdc 12386. Each element of the sequence 𝐹 is greater than the previous element. (Contributed by Jim Kingdon, 26-Sep-2024.)
(𝜑𝐴 ⊆ ℕ)    &   (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)    &   (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)    &   (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))    &   𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))    &   (𝜑𝑈 ∈ ℕ)       (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
 
Theoremnninfdclemlt 12384* Lemma for nninfdc 12386. The function from nninfdclemf 12382 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.)
(𝜑𝐴 ⊆ ℕ)    &   (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)    &   (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)    &   (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))    &   𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))    &   (𝜑𝑈 ∈ ℕ)    &   (𝜑𝑉 ∈ ℕ)    &   (𝜑𝑈 < 𝑉)       (𝜑 → (𝐹𝑈) < (𝐹𝑉))
 
Theoremnninfdclemf1 12385* Lemma for nninfdc 12386. The function from nninfdclemf 12382 is one-to-one. (Contributed by Jim Kingdon, 23-Sep-2024.)
(𝜑𝐴 ⊆ ℕ)    &   (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)    &   (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)    &   (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))    &   𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))       (𝜑𝐹:ℕ–1-1𝐴)
 
Theoremnninfdc 12386* An unbounded decidable set of positive integers is infinite. (Contributed by Jim Kingdon, 23-Sep-2024.)
((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → ω ≼ 𝐴)
 
Theoremunbendc 12387* An unbounded decidable set of positive integers is infinite. (Contributed by NM, 5-May-2005.) (Revised by Jim Kingdon, 30-Sep-2024.)
((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛) → 𝐴 ≈ ℕ)
 
Theoremprminf 12388 There are an infinite number of primes. Theorem 1.7 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 28-Nov-2012.)
ℙ ≈ ℕ
 
Theoreminfpn2 12389* There exist infinitely many prime numbers: the set of all primes 𝑆 is unbounded by infpn 12291, so by unbendc 12387 it is infinite. This is Metamath 100 proof #11. (Contributed by NM, 5-May-2005.)
𝑆 = {𝑛 ∈ ℕ ∣ (1 < 𝑛 ∧ ∀𝑚 ∈ ℕ ((𝑛 / 𝑚) ∈ ℕ → (𝑚 = 1 ∨ 𝑚 = 𝑛)))}       𝑆 ≈ ℕ
 
PART 6  BASIC STRUCTURES
 
6.1  Extensible structures
 
6.1.1  Basic definitions

An "extensible structure" (or "structure" in short, at least in this section) is used to define a specific group, ring, poset, and so on. An extensible structure can contain many components. For example, a group will have at least two components (base set and operation), although it can be further specialized by adding other components such as a multiplicative operation for rings (and still remain a group per our definition). Thus, every ring is also a group. This extensible structure approach allows theorems from more general structures (such as groups) to be reused for more specialized structures (such as rings) without having to reprove anything. Structures are common in mathematics, but in informal (natural language) proofs the details are assumed in ways that we must make explicit.

An extensible structure is implemented as a function (a set of ordered pairs) on a finite (and not necessarily sequential) subset of . The function's argument is the index of a structure component (such as 1 for the base set of a group), and its value is the component (such as the base set). By convention, we normally avoid direct reference to the hard-coded numeric index and instead use structure component extractors such as ndxid 12418 and strslfv 12438. Using extractors makes it easier to change numeric indices and also makes the components' purpose clearer. See the comment of basendx 12448 for more details on numeric indices versus the structure component extractors.

There are many other possible ways to handle structures. We chose this extensible structure approach because this approach (1) results in simpler notation than other approaches we are aware of, and (2) is easier to do proofs with. We cannot use an approach that uses "hidden" arguments; Metamath does not support hidden arguments, and in any case we want nothing hidden. It would be possible to use a categorical approach (e.g., something vaguely similar to Lean's mathlib). However, instances (the chain of proofs that an 𝑋 is a 𝑌 via a bunch of forgetful functors) can cause serious performance problems for automated tooling, and the resulting proofs would be painful to look at directly (in the case of Lean, they are long past the level where people would find it acceptable to look at them directly). Metamath is working under much stricter conditions than this, and it has still managed to achieve about the same level of flexibility through this "extensible structure" approach.

To create a substructure of a given extensible structure, you can simply use the multifunction restriction operator for extensible structures s as defined in df-ress 12402. This can be used to turn statements about rings into statements about subrings, modules into submodules, etc. This definition knows nothing about individual structures and merely truncates the Base set while leaving operators alone. Individual kinds of structures will need to handle this behavior by ignoring operators' values outside the range, defining a function using the base set and applying that, or explicitly truncating the slot before use.

Extensible structures only work well when they represent concrete categories, where there is a "base set", morphisms are functions, and subobjects are subsets with induced operations. In short, they primarily work well for "sets with (some) extra structure". Extensible structures may not suffice for more complicated situations. For example, in manifolds, s would not work. That said, extensible structures are sufficient for many of the structures that set.mm currently considers, and offer a good compromise for a goal-oriented formalization.

 
Syntaxcstr 12390 Extend class notation with the class of structures with components numbered below 𝐴.
class Struct
 
Syntaxcnx 12391 Extend class notation with the structure component index extractor.
class ndx
 
Syntaxcsts 12392 Set components of a structure.
class sSet
 
Syntaxcslot 12393 Extend class notation with the slot function.
class Slot 𝐴
 
Syntaxcbs 12394 Extend class notation with the class of all base set extractors.
class Base
 
Syntaxcress 12395 Extend class notation with the extensible structure builder restriction operator.
class s
 
Definitiondf-struct 12396* Define a structure with components in 𝑀...𝑁. This is not a requirement for groups, posets, etc., but it is a useful assumption for component extraction theorems.

As mentioned in the section header, an "extensible structure should be implemented as a function (a set of ordered pairs)". The current definition, however, is less restrictive: it allows for classes which contain the empty set to be extensible structures. Because of 0nelfun 5206, such classes cannot be functions. Without the empty set, however, a structure must be a function, see structn0fun 12407: 𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}).

Allowing an extensible structure to contain the empty set ensures that expressions like {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} are structures without asserting or implying that 𝐴, 𝐵, 𝐶 and 𝐷 are sets (if 𝐴 or 𝐵 is a proper class, then 𝐴, 𝐵⟩ = ∅, see opprc 3779). (Contributed by Mario Carneiro, 29-Aug-2015.)

Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
 
Definitiondf-ndx 12397 Define the structure component index extractor. See Theorem ndxarg 12417 to understand its purpose. The restriction to ensures that ndx is a set. The restriction to some set is necessary since I is a proper class. In principle, we could have chosen or (if we revise all structure component definitions such as df-base 12400) another set such as the set of finite ordinals ω (df-iom 4568). (Contributed by NM, 4-Sep-2011.)
ndx = ( I ↾ ℕ)
 
Definitiondf-slot 12398* Define the slot extractor for extensible structures. The class Slot 𝐴 is a function whose argument can be any set, although it is meaningful only if that set is a member of an extensible structure (such as a partially ordered set or a group).

Note that Slot 𝐴 is implemented as "evaluation at 𝐴". That is, (Slot 𝐴𝑆) is defined to be (𝑆𝐴), where 𝐴 will typically be a small nonzero natural number. Each extensible structure 𝑆 is a function defined on specific natural number "slots", and this function extracts the value at a particular slot.

The special "structure" ndx, defined as the identity function restricted to , can be used to extract the number 𝐴 from a slot, since (Slot 𝐴‘ndx) = 𝐴 (see ndxarg 12417). This is typically used to refer to the number of a slot when defining structures without having to expose the detail of what that number is (for instance, we use the expression (Base‘ndx) in theorems and proofs instead of its value 1).

The class Slot cannot be defined as (𝑥 ∈ V ↦ (𝑓 ∈ V ↦ (𝑓𝑥))) because each Slot 𝐴 is a function on the proper class V so is itself a proper class, and the values of functions are sets (fvex 5506). It is necessary to allow proper classes as values of Slot 𝐴 since for instance the class of all (base sets of) groups is proper. (Contributed by Mario Carneiro, 22-Sep-2015.)

Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥𝐴))
 
Theoremsloteq 12399 Equality theorem for the Slot construction. The converse holds if 𝐴 (or 𝐵) is a set. (Contributed by BJ, 27-Dec-2021.)
(𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵)
 
Definitiondf-base 12400 Define the base set (also called underlying set, ground set, carrier set, or carrier) extractor for extensible structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.)
Base = Slot 1
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >