Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gznegcl | GIF version |
Description: The gaussian integers are closed under negation. (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
gznegcl | ⊢ (𝐴 ∈ ℤ[i] → -𝐴 ∈ ℤ[i]) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gzcn 12298 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ) | |
2 | 1 | negcld 8192 | . 2 ⊢ (𝐴 ∈ ℤ[i] → -𝐴 ∈ ℂ) |
3 | 1 | renegd 10892 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘-𝐴) = -(ℜ‘𝐴)) |
4 | elgz 12297 | . . . . 5 ⊢ (𝐴 ∈ ℤ[i] ↔ (𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℤ ∧ (ℑ‘𝐴) ∈ ℤ)) | |
5 | 4 | simp2bi 1003 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘𝐴) ∈ ℤ) |
6 | 5 | znegcld 9311 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → -(ℜ‘𝐴) ∈ ℤ) |
7 | 3, 6 | eqeltrd 2242 | . 2 ⊢ (𝐴 ∈ ℤ[i] → (ℜ‘-𝐴) ∈ ℤ) |
8 | 1 | imnegd 10893 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘-𝐴) = -(ℑ‘𝐴)) |
9 | 4 | simp3bi 1004 | . . . 4 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘𝐴) ∈ ℤ) |
10 | 9 | znegcld 9311 | . . 3 ⊢ (𝐴 ∈ ℤ[i] → -(ℑ‘𝐴) ∈ ℤ) |
11 | 8, 10 | eqeltrd 2242 | . 2 ⊢ (𝐴 ∈ ℤ[i] → (ℑ‘-𝐴) ∈ ℤ) |
12 | elgz 12297 | . 2 ⊢ (-𝐴 ∈ ℤ[i] ↔ (-𝐴 ∈ ℂ ∧ (ℜ‘-𝐴) ∈ ℤ ∧ (ℑ‘-𝐴) ∈ ℤ)) | |
13 | 2, 7, 11, 12 | syl3anbrc 1171 | 1 ⊢ (𝐴 ∈ ℤ[i] → -𝐴 ∈ ℤ[i]) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ‘cfv 5187 ℂcc 7747 -cneg 8066 ℤcz 9187 ℜcre 10778 ℑcim 10779 ℤ[i]cgz 12295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-po 4273 df-iso 4274 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-z 9188 df-cj 10780 df-re 10781 df-im 10782 df-gz 12296 |
This theorem is referenced by: gzsubcl 12306 |
Copyright terms: Public domain | W3C validator |