ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercl2 GIF version

Theorem ercl2 6633
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1 (𝜑𝑅 Er 𝑋)
ersym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
ercl2 (𝜑𝐵𝑋)

Proof of Theorem ercl2
StepHypRef Expression
1 ersym.1 . 2 (𝜑𝑅 Er 𝑋)
2 ersym.2 . . 3 (𝜑𝐴𝑅𝐵)
31, 2ersym 6632 . 2 (𝜑𝐵𝑅𝐴)
41, 3ercl 6631 1 (𝜑𝐵𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176   class class class wbr 4044   Er wer 6617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-dm 4685  df-er 6620
This theorem is referenced by:  qliftfun  6704  nqnq0pi  7551  qusgrp2  13449
  Copyright terms: Public domain W3C validator