| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > finds2 | GIF version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.) | 
| Ref | Expression | 
|---|---|
| finds2.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | 
| finds2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | 
| finds2.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | 
| finds2.4 | ⊢ (𝜏 → 𝜓) | 
| finds2.5 | ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) | 
| Ref | Expression | 
|---|---|
| finds2 | ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | finds2.4 | . . . . 5 ⊢ (𝜏 → 𝜓) | |
| 2 | 0ex 4160 | . . . . . 6 ⊢ ∅ ∈ V | |
| 3 | finds2.1 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | imbi2d 230 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜓))) | 
| 5 | 2, 4 | elab 2908 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜓)) | 
| 6 | 1, 5 | mpbir 146 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} | 
| 7 | finds2.5 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) | |
| 8 | 7 | a2d 26 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((𝜏 → 𝜒) → (𝜏 → 𝜃))) | 
| 9 | vex 2766 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 10 | finds2.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 11 | 10 | imbi2d 230 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜒))) | 
| 12 | 9, 11 | elab 2908 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜒)) | 
| 13 | 9 | sucex 4535 | . . . . . . 7 ⊢ suc 𝑦 ∈ V | 
| 14 | finds2.3 | . . . . . . . 8 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 15 | 14 | imbi2d 230 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜃))) | 
| 16 | 13, 15 | elab 2908 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜃)) | 
| 17 | 8, 12, 16 | 3imtr4g 205 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)})) | 
| 18 | 17 | rgen 2550 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)}) | 
| 19 | peano5 4634 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)})) → ω ⊆ {𝑥 ∣ (𝜏 → 𝜑)}) | |
| 20 | 6, 18, 19 | mp2an 426 | . . 3 ⊢ ω ⊆ {𝑥 ∣ (𝜏 → 𝜑)} | 
| 21 | 20 | sseli 3179 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ {𝑥 ∣ (𝜏 → 𝜑)}) | 
| 22 | abid 2184 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜑)) | |
| 23 | 21, 22 | sylib 122 | 1 ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 ⊆ wss 3157 ∅c0 3450 suc csuc 4400 ωcom 4626 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: finds1 4638 frecrdg 6466 nnacl 6538 nnmcl 6539 nnacom 6542 nnaass 6543 nndi 6544 nnmass 6545 nnmsucr 6546 nnmcom 6547 nnsucsssuc 6550 nntri3or 6551 nnaordi 6566 nnaword 6569 nnmordi 6574 nnaordex 6586 fiintim 6992 prarloclem3 7564 frec2uzuzd 10494 frec2uzrdg 10501 | 
| Copyright terms: Public domain | W3C validator |