![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > finds2 | GIF version |
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.) |
Ref | Expression |
---|---|
finds2.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
finds2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
finds2.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
finds2.4 | ⊢ (𝜏 → 𝜓) |
finds2.5 | ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
finds2 | ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finds2.4 | . . . . 5 ⊢ (𝜏 → 𝜓) | |
2 | 0ex 3934 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | finds2.1 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
4 | 3 | imbi2d 228 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜓))) |
5 | 2, 4 | elab 2750 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜓)) |
6 | 1, 5 | mpbir 144 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} |
7 | finds2.5 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) | |
8 | 7 | a2d 26 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((𝜏 → 𝜒) → (𝜏 → 𝜃))) |
9 | vex 2617 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
10 | finds2.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
11 | 10 | imbi2d 228 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜒))) |
12 | 9, 11 | elab 2750 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜒)) |
13 | 9 | sucex 4282 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
14 | finds2.3 | . . . . . . . 8 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
15 | 14 | imbi2d 228 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜃))) |
16 | 13, 15 | elab 2750 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜃)) |
17 | 8, 12, 16 | 3imtr4g 203 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)})) |
18 | 17 | rgen 2424 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)}) |
19 | peano5 4379 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)})) → ω ⊆ {𝑥 ∣ (𝜏 → 𝜑)}) | |
20 | 6, 18, 19 | mp2an 417 | . . 3 ⊢ ω ⊆ {𝑥 ∣ (𝜏 → 𝜑)} |
21 | 20 | sseli 3008 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ {𝑥 ∣ (𝜏 → 𝜑)}) |
22 | abid 2073 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜑)) | |
23 | 21, 22 | sylib 120 | 1 ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1287 ∈ wcel 1436 {cab 2071 ∀wral 2355 ⊆ wss 2986 ∅c0 3272 suc csuc 4159 ωcom 4371 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-13 1447 ax-14 1448 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 ax-sep 3925 ax-nul 3933 ax-pow 3977 ax-pr 4003 ax-un 4227 ax-iinf 4369 |
This theorem depends on definitions: df-bi 115 df-3an 924 df-tru 1290 df-nf 1393 df-sb 1690 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-ral 2360 df-rex 2361 df-v 2616 df-dif 2988 df-un 2990 df-in 2992 df-ss 2999 df-nul 3273 df-pw 3411 df-sn 3431 df-pr 3432 df-uni 3631 df-int 3666 df-suc 4165 df-iom 4372 |
This theorem is referenced by: finds1 4383 frecrdg 6108 nnacl 6176 nnmcl 6177 nnacom 6180 nnaass 6181 nndi 6182 nnmass 6183 nnmsucr 6184 nnmcom 6185 nnsucsssuc 6188 nntri3or 6189 nnaordi 6200 nnaword 6203 nnmordi 6208 nnaordex 6219 prarloclem3 6977 frec2uzuzd 9712 frec2uzrdg 9719 |
Copyright terms: Public domain | W3C validator |