Step | Hyp | Ref
| Expression |
1 | | 4sq.1 |
. . 3
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} |
2 | 1 | 4sqlem4 12344 |
. 2
⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑎 ∈ ℤ[i] ∃𝑏 ∈ ℤ[i] 𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2))) |
3 | 1 | 4sqlem4 12344 |
. 2
⊢ (𝐵 ∈ 𝑆 ↔ ∃𝑐 ∈ ℤ[i] ∃𝑑 ∈ ℤ[i] 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) |
4 | | reeanv 2639 |
. . 3
⊢
(∃𝑎 ∈
ℤ[i] ∃𝑐 ∈
ℤ[i] (∃𝑏 ∈
ℤ[i] 𝐴 =
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∧ ∃𝑑 ∈
ℤ[i] 𝐵 =
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))
↔ (∃𝑎 ∈
ℤ[i] ∃𝑏 ∈
ℤ[i] 𝐴 =
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∧ ∃𝑐 ∈
ℤ[i] ∃𝑑 ∈
ℤ[i] 𝐵 =
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))) |
5 | | reeanv 2639 |
. . . . 5
⊢
(∃𝑏 ∈
ℤ[i] ∃𝑑 ∈
ℤ[i] (𝐴 =
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∧ 𝐵 =
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))
↔ (∃𝑏 ∈
ℤ[i] 𝐴 =
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∧ ∃𝑑 ∈
ℤ[i] 𝐵 =
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))) |
6 | | simpll 524 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
𝑎 ∈
ℤ[i]) |
7 | | gzabssqcl 12333 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℤ[i] →
((abs‘𝑎)↑2)
∈ ℕ0) |
8 | 6, 7 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((abs‘𝑎)↑2)
∈ ℕ0) |
9 | | simprl 526 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
𝑏 ∈
ℤ[i]) |
10 | | gzabssqcl 12333 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ ℤ[i] →
((abs‘𝑏)↑2)
∈ ℕ0) |
11 | 9, 10 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((abs‘𝑏)↑2)
∈ ℕ0) |
12 | 8, 11 | nn0addcld 9192 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∈ ℕ0) |
13 | 12 | nn0cnd 9190 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∈ ℂ) |
14 | 13 | div1d 8697 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((((abs‘𝑎)↑2) +
((abs‘𝑏)↑2)) /
1) = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2))) |
15 | | simplr 525 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
𝑐 ∈
ℤ[i]) |
16 | | gzabssqcl 12333 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ ℤ[i] →
((abs‘𝑐)↑2)
∈ ℕ0) |
17 | 15, 16 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((abs‘𝑐)↑2)
∈ ℕ0) |
18 | | simprr 527 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
𝑑 ∈
ℤ[i]) |
19 | | gzabssqcl 12333 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ ℤ[i] →
((abs‘𝑑)↑2)
∈ ℕ0) |
20 | 18, 19 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((abs‘𝑑)↑2)
∈ ℕ0) |
21 | 17, 20 | nn0addcld 9192 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2))
∈ ℕ0) |
22 | 21 | nn0cnd 9190 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2))
∈ ℂ) |
23 | 22 | div1d 8697 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)) /
1) = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) |
24 | 14, 23 | oveq12d 5871 |
. . . . . . . 8
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(((((abs‘𝑎)↑2) +
((abs‘𝑏)↑2)) /
1) · ((((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)) / 1)) = ((((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ·
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))) |
25 | | eqid 2170 |
. . . . . . . . 9
⊢
(((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) |
26 | | eqid 2170 |
. . . . . . . . 9
⊢
(((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)) = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)) |
27 | | 1nn 8889 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ |
28 | 27 | a1i 9 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → 1
∈ ℕ) |
29 | | gzsubcl 12332 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) →
(𝑎 − 𝑐) ∈
ℤ[i]) |
30 | 29 | adantr 274 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(𝑎 − 𝑐) ∈
ℤ[i]) |
31 | | gzcn 12324 |
. . . . . . . . . . . 12
⊢ ((𝑎 − 𝑐) ∈ ℤ[i] → (𝑎 − 𝑐) ∈ ℂ) |
32 | 30, 31 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(𝑎 − 𝑐) ∈
ℂ) |
33 | 32 | div1d 8697 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((𝑎 − 𝑐) / 1) = (𝑎 − 𝑐)) |
34 | 33, 30 | eqeltrd 2247 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((𝑎 − 𝑐) / 1) ∈
ℤ[i]) |
35 | | gzsubcl 12332 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i]) →
(𝑏 − 𝑑) ∈
ℤ[i]) |
36 | 35 | adantl 275 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(𝑏 − 𝑑) ∈
ℤ[i]) |
37 | | gzcn 12324 |
. . . . . . . . . . . 12
⊢ ((𝑏 − 𝑑) ∈ ℤ[i] → (𝑏 − 𝑑) ∈ ℂ) |
38 | 36, 37 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(𝑏 − 𝑑) ∈
ℂ) |
39 | 38 | div1d 8697 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((𝑏 − 𝑑) / 1) = (𝑏 − 𝑑)) |
40 | 39, 36 | eqeltrd 2247 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((𝑏 − 𝑑) / 1) ∈
ℤ[i]) |
41 | 14, 12 | eqeltrd 2247 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((((abs‘𝑎)↑2) +
((abs‘𝑏)↑2)) /
1) ∈ ℕ0) |
42 | 1, 6, 9, 15, 18, 25, 26, 28, 34, 40, 41 | mul4sqlem 12345 |
. . . . . . . 8
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(((((abs‘𝑎)↑2) +
((abs‘𝑏)↑2)) /
1) · ((((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)) / 1)) ∈ 𝑆) |
43 | 24, 42 | eqeltrrd 2248 |
. . . . . . 7
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
· (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) ∈ 𝑆) |
44 | | oveq12 5862 |
. . . . . . . 8
⊢ ((𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → (𝐴 · 𝐵) = ((((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) · (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)))) |
45 | 44 | eleq1d 2239 |
. . . . . . 7
⊢ ((𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → ((𝐴 · 𝐵) ∈ 𝑆 ↔ ((((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) · (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) ∈ 𝑆)) |
46 | 43, 45 | syl5ibrcom 156 |
. . . . . 6
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → (𝐴 · 𝐵) ∈ 𝑆)) |
47 | 46 | rexlimdvva 2595 |
. . . . 5
⊢ ((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) →
(∃𝑏 ∈ ℤ[i]
∃𝑑 ∈ ℤ[i]
(𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → (𝐴 · 𝐵) ∈ 𝑆)) |
48 | 5, 47 | syl5bir 152 |
. . . 4
⊢ ((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) →
((∃𝑏 ∈
ℤ[i] 𝐴 =
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∧ ∃𝑑 ∈
ℤ[i] 𝐵 =
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))
→ (𝐴 · 𝐵) ∈ 𝑆)) |
49 | 48 | rexlimivv 2593 |
. . 3
⊢
(∃𝑎 ∈
ℤ[i] ∃𝑐 ∈
ℤ[i] (∃𝑏 ∈
ℤ[i] 𝐴 =
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∧ ∃𝑑 ∈
ℤ[i] 𝐵 =
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))
→ (𝐴 · 𝐵) ∈ 𝑆) |
50 | 4, 49 | sylbir 134 |
. 2
⊢
((∃𝑎 ∈
ℤ[i] ∃𝑏 ∈
ℤ[i] 𝐴 =
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∧ ∃𝑐 ∈
ℤ[i] ∃𝑑 ∈
ℤ[i] 𝐵 =
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))
→ (𝐴 · 𝐵) ∈ 𝑆) |
51 | 2, 3, 50 | syl2anb 289 |
1
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) |