| Step | Hyp | Ref
| Expression |
| 1 | | 4sq.1 |
. . 3
⊢ 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))} |
| 2 | 1 | 4sqlem4 12561 |
. 2
⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑎 ∈ ℤ[i] ∃𝑏 ∈ ℤ[i] 𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2))) |
| 3 | 1 | 4sqlem4 12561 |
. 2
⊢ (𝐵 ∈ 𝑆 ↔ ∃𝑐 ∈ ℤ[i] ∃𝑑 ∈ ℤ[i] 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) |
| 4 | | reeanv 2667 |
. . 3
⊢
(∃𝑎 ∈
ℤ[i] ∃𝑐 ∈
ℤ[i] (∃𝑏 ∈
ℤ[i] 𝐴 =
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∧ ∃𝑑 ∈
ℤ[i] 𝐵 =
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))
↔ (∃𝑎 ∈
ℤ[i] ∃𝑏 ∈
ℤ[i] 𝐴 =
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∧ ∃𝑐 ∈
ℤ[i] ∃𝑑 ∈
ℤ[i] 𝐵 =
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))) |
| 5 | | reeanv 2667 |
. . . . 5
⊢
(∃𝑏 ∈
ℤ[i] ∃𝑑 ∈
ℤ[i] (𝐴 =
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∧ 𝐵 =
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))
↔ (∃𝑏 ∈
ℤ[i] 𝐴 =
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∧ ∃𝑑 ∈
ℤ[i] 𝐵 =
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))) |
| 6 | | simpll 527 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
𝑎 ∈
ℤ[i]) |
| 7 | | gzabssqcl 12550 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ ℤ[i] →
((abs‘𝑎)↑2)
∈ ℕ0) |
| 8 | 6, 7 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((abs‘𝑎)↑2)
∈ ℕ0) |
| 9 | | simprl 529 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
𝑏 ∈
ℤ[i]) |
| 10 | | gzabssqcl 12550 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ ℤ[i] →
((abs‘𝑏)↑2)
∈ ℕ0) |
| 11 | 9, 10 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((abs‘𝑏)↑2)
∈ ℕ0) |
| 12 | 8, 11 | nn0addcld 9306 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∈ ℕ0) |
| 13 | 12 | nn0cnd 9304 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∈ ℂ) |
| 14 | 13 | div1d 8807 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((((abs‘𝑎)↑2) +
((abs‘𝑏)↑2)) /
1) = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2))) |
| 15 | | simplr 528 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
𝑐 ∈
ℤ[i]) |
| 16 | | gzabssqcl 12550 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ ℤ[i] →
((abs‘𝑐)↑2)
∈ ℕ0) |
| 17 | 15, 16 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((abs‘𝑐)↑2)
∈ ℕ0) |
| 18 | | simprr 531 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
𝑑 ∈
ℤ[i]) |
| 19 | | gzabssqcl 12550 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ ℤ[i] →
((abs‘𝑑)↑2)
∈ ℕ0) |
| 20 | 18, 19 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((abs‘𝑑)↑2)
∈ ℕ0) |
| 21 | 17, 20 | nn0addcld 9306 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2))
∈ ℕ0) |
| 22 | 21 | nn0cnd 9304 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2))
∈ ℂ) |
| 23 | 22 | div1d 8807 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)) /
1) = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) |
| 24 | 14, 23 | oveq12d 5940 |
. . . . . . . 8
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(((((abs‘𝑎)↑2) +
((abs‘𝑏)↑2)) /
1) · ((((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)) / 1)) = ((((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ·
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))) |
| 25 | | eqid 2196 |
. . . . . . . . 9
⊢
(((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) |
| 26 | | eqid 2196 |
. . . . . . . . 9
⊢
(((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)) = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)) |
| 27 | | 1nn 9001 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ |
| 28 | 27 | a1i 9 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) → 1
∈ ℕ) |
| 29 | | gzsubcl 12549 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) →
(𝑎 − 𝑐) ∈
ℤ[i]) |
| 30 | 29 | adantr 276 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(𝑎 − 𝑐) ∈
ℤ[i]) |
| 31 | | gzcn 12541 |
. . . . . . . . . . . 12
⊢ ((𝑎 − 𝑐) ∈ ℤ[i] → (𝑎 − 𝑐) ∈ ℂ) |
| 32 | 30, 31 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(𝑎 − 𝑐) ∈
ℂ) |
| 33 | 32 | div1d 8807 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((𝑎 − 𝑐) / 1) = (𝑎 − 𝑐)) |
| 34 | 33, 30 | eqeltrd 2273 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((𝑎 − 𝑐) / 1) ∈
ℤ[i]) |
| 35 | | gzsubcl 12549 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i]) →
(𝑏 − 𝑑) ∈
ℤ[i]) |
| 36 | 35 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(𝑏 − 𝑑) ∈
ℤ[i]) |
| 37 | | gzcn 12541 |
. . . . . . . . . . . 12
⊢ ((𝑏 − 𝑑) ∈ ℤ[i] → (𝑏 − 𝑑) ∈ ℂ) |
| 38 | 36, 37 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(𝑏 − 𝑑) ∈
ℂ) |
| 39 | 38 | div1d 8807 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((𝑏 − 𝑑) / 1) = (𝑏 − 𝑑)) |
| 40 | 39, 36 | eqeltrd 2273 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((𝑏 − 𝑑) / 1) ∈
ℤ[i]) |
| 41 | 14, 12 | eqeltrd 2273 |
. . . . . . . . 9
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((((abs‘𝑎)↑2) +
((abs‘𝑏)↑2)) /
1) ∈ ℕ0) |
| 42 | 1, 6, 9, 15, 18, 25, 26, 28, 34, 40, 41 | mul4sqlem 12562 |
. . . . . . . 8
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
(((((abs‘𝑎)↑2) +
((abs‘𝑏)↑2)) /
1) · ((((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)) / 1)) ∈ 𝑆) |
| 43 | 24, 42 | eqeltrrd 2274 |
. . . . . . 7
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
· (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) ∈ 𝑆) |
| 44 | | oveq12 5931 |
. . . . . . . 8
⊢ ((𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → (𝐴 · 𝐵) = ((((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) · (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2)))) |
| 45 | 44 | eleq1d 2265 |
. . . . . . 7
⊢ ((𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → ((𝐴 · 𝐵) ∈ 𝑆 ↔ ((((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) · (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) ∈ 𝑆)) |
| 46 | 43, 45 | syl5ibrcom 157 |
. . . . . 6
⊢ (((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) ∧ (𝑏 ∈ ℤ[i] ∧ 𝑑 ∈ ℤ[i])) →
((𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → (𝐴 · 𝐵) ∈ 𝑆)) |
| 47 | 46 | rexlimdvva 2622 |
. . . . 5
⊢ ((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) →
(∃𝑏 ∈ ℤ[i]
∃𝑑 ∈ ℤ[i]
(𝐴 = (((abs‘𝑎)↑2) + ((abs‘𝑏)↑2)) ∧ 𝐵 = (((abs‘𝑐)↑2) + ((abs‘𝑑)↑2))) → (𝐴 · 𝐵) ∈ 𝑆)) |
| 48 | 5, 47 | biimtrrid 153 |
. . . 4
⊢ ((𝑎 ∈ ℤ[i] ∧ 𝑐 ∈ ℤ[i]) →
((∃𝑏 ∈
ℤ[i] 𝐴 =
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∧ ∃𝑑 ∈
ℤ[i] 𝐵 =
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))
→ (𝐴 · 𝐵) ∈ 𝑆)) |
| 49 | 48 | rexlimivv 2620 |
. . 3
⊢
(∃𝑎 ∈
ℤ[i] ∃𝑐 ∈
ℤ[i] (∃𝑏 ∈
ℤ[i] 𝐴 =
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∧ ∃𝑑 ∈
ℤ[i] 𝐵 =
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))
→ (𝐴 · 𝐵) ∈ 𝑆) |
| 50 | 4, 49 | sylbir 135 |
. 2
⊢
((∃𝑎 ∈
ℤ[i] ∃𝑏 ∈
ℤ[i] 𝐴 =
(((abs‘𝑎)↑2) +
((abs‘𝑏)↑2))
∧ ∃𝑐 ∈
ℤ[i] ∃𝑑 ∈
ℤ[i] 𝐵 =
(((abs‘𝑐)↑2) +
((abs‘𝑑)↑2)))
→ (𝐴 · 𝐵) ∈ 𝑆) |
| 51 | 2, 3, 50 | syl2anb 291 |
1
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) |