| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul2sq | GIF version | ||
| Description: Fibonacci's identity (actually due to Diophantus). The product of two sums of two squares is also a sum of two squares. We can take advantage of Gaussian integers here to trivialize the proof. (Contributed by Mario Carneiro, 19-Jun-2015.) |
| Ref | Expression |
|---|---|
| 2sq.1 | ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) |
| Ref | Expression |
|---|---|
| mul2sq | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2sq.1 | . . 3 ⊢ 𝑆 = ran (𝑤 ∈ ℤ[i] ↦ ((abs‘𝑤)↑2)) | |
| 2 | 1 | 2sqlem1 15666 | . 2 ⊢ (𝐴 ∈ 𝑆 ↔ ∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2)) |
| 3 | 1 | 2sqlem1 15666 | . 2 ⊢ (𝐵 ∈ 𝑆 ↔ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2)) |
| 4 | reeanv 2677 | . . 3 ⊢ (∃𝑥 ∈ ℤ[i] ∃𝑦 ∈ ℤ[i] (𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) ↔ (∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2) ∧ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2))) | |
| 5 | gzmulcl 12776 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (𝑥 · 𝑦) ∈ ℤ[i]) | |
| 6 | gzcn 12770 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℤ[i] → 𝑥 ∈ ℂ) | |
| 7 | gzcn 12770 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℤ[i] → 𝑦 ∈ ℂ) | |
| 8 | absmul 11455 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) | |
| 9 | 6, 7, 8 | syl2an 289 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) |
| 10 | 9 | oveq1d 5972 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ((abs‘(𝑥 · 𝑦))↑2) = (((abs‘𝑥) · (abs‘𝑦))↑2)) |
| 11 | 6 | abscld 11567 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℤ[i] → (abs‘𝑥) ∈ ℝ) |
| 12 | 11 | recnd 8121 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℤ[i] → (abs‘𝑥) ∈ ℂ) |
| 13 | 7 | abscld 11567 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℤ[i] → (abs‘𝑦) ∈ ℝ) |
| 14 | 13 | recnd 8121 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℤ[i] → (abs‘𝑦) ∈ ℂ) |
| 15 | sqmul 10768 | . . . . . . . . 9 ⊢ (((abs‘𝑥) ∈ ℂ ∧ (abs‘𝑦) ∈ ℂ) → (((abs‘𝑥) · (abs‘𝑦))↑2) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2))) | |
| 16 | 12, 14, 15 | syl2an 289 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥) · (abs‘𝑦))↑2) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2))) |
| 17 | 10, 16 | eqtr2d 2240 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘(𝑥 · 𝑦))↑2)) |
| 18 | fveq2 5589 | . . . . . . . . 9 ⊢ (𝑧 = (𝑥 · 𝑦) → (abs‘𝑧) = (abs‘(𝑥 · 𝑦))) | |
| 19 | 18 | oveq1d 5972 | . . . . . . . 8 ⊢ (𝑧 = (𝑥 · 𝑦) → ((abs‘𝑧)↑2) = ((abs‘(𝑥 · 𝑦))↑2)) |
| 20 | 19 | rspceeqv 2899 | . . . . . . 7 ⊢ (((𝑥 · 𝑦) ∈ ℤ[i] ∧ (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘(𝑥 · 𝑦))↑2)) → ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2)) |
| 21 | 5, 17, 20 | syl2anc 411 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2)) |
| 22 | 1 | 2sqlem1 15666 | . . . . . 6 ⊢ ((((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆 ↔ ∃𝑧 ∈ ℤ[i] (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) = ((abs‘𝑧)↑2)) |
| 23 | 21, 22 | sylibr 134 | . . . . 5 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆) |
| 24 | oveq12 5966 | . . . . . 6 ⊢ ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) = (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2))) | |
| 25 | 24 | eleq1d 2275 | . . . . 5 ⊢ ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → ((𝐴 · 𝐵) ∈ 𝑆 ↔ (((abs‘𝑥)↑2) · ((abs‘𝑦)↑2)) ∈ 𝑆)) |
| 26 | 23, 25 | syl5ibrcom 157 | . . . 4 ⊢ ((𝑥 ∈ ℤ[i] ∧ 𝑦 ∈ ℤ[i]) → ((𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆)) |
| 27 | 26 | rexlimivv 2630 | . . 3 ⊢ (∃𝑥 ∈ ℤ[i] ∃𝑦 ∈ ℤ[i] (𝐴 = ((abs‘𝑥)↑2) ∧ 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆) |
| 28 | 4, 27 | sylbir 135 | . 2 ⊢ ((∃𝑥 ∈ ℤ[i] 𝐴 = ((abs‘𝑥)↑2) ∧ ∃𝑦 ∈ ℤ[i] 𝐵 = ((abs‘𝑦)↑2)) → (𝐴 · 𝐵) ∈ 𝑆) |
| 29 | 2, 3, 28 | syl2anb 291 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 · 𝐵) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 ↦ cmpt 4113 ran crn 4684 ‘cfv 5280 (class class class)co 5957 ℂcc 7943 · cmul 7950 2c2 9107 ↑cexp 10705 abscabs 11383 ℤ[i]cgz 12767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-rp 9796 df-seqfrec 10615 df-exp 10706 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-gz 12768 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |