ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadmres GIF version

Theorem imadmres 5096
Description: The image of the domain of a restriction. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imadmres (𝐴 “ dom (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem imadmres
StepHypRef Expression
1 resdmres 5095 . . 3 (𝐴 ↾ dom (𝐴𝐵)) = (𝐴𝐵)
21rneqi 4832 . 2 ran (𝐴 ↾ dom (𝐴𝐵)) = ran (𝐴𝐵)
3 df-ima 4617 . 2 (𝐴 “ dom (𝐴𝐵)) = ran (𝐴 ↾ dom (𝐴𝐵))
4 df-ima 4617 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2196 1 (𝐴 “ dom (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1343  dom cdm 4604  ran crn 4605  cres 4606  cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by:  ssimaex  5547
  Copyright terms: Public domain W3C validator