![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > suppssof1 | GIF version |
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
Ref | Expression |
---|---|
suppssof1.s | ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿) |
suppssof1.o | ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) |
suppssof1.a | ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) |
suppssof1.b | ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) |
suppssof1.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
Ref | Expression |
---|---|
suppssof1 | ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssof1.a | . . . . . 6 ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) | |
2 | ffn 5403 | . . . . . 6 ⊢ (𝐴:𝐷⟶𝑉 → 𝐴 Fn 𝐷) | |
3 | 1, 2 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐴 Fn 𝐷) |
4 | suppssof1.b | . . . . . 6 ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) | |
5 | ffn 5403 | . . . . . 6 ⊢ (𝐵:𝐷⟶𝑅 → 𝐵 Fn 𝐷) | |
6 | 4, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐵 Fn 𝐷) |
7 | suppssof1.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
8 | inidm 3368 | . . . . 5 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
9 | eqidd 2194 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) = (𝐴‘𝑥)) | |
10 | eqidd 2194 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) = (𝐵‘𝑥)) | |
11 | 3, 6, 7, 7, 8, 9, 10 | offval 6138 | . . . 4 ⊢ (𝜑 → (𝐴 ∘𝑓 𝑂𝐵) = (𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥)))) |
12 | 11 | cnveqd 4838 | . . 3 ⊢ (𝜑 → ◡(𝐴 ∘𝑓 𝑂𝐵) = ◡(𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥)))) |
13 | 12 | imaeq1d 5004 | . 2 ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) = (◡(𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥))) “ (V ∖ {𝑍}))) |
14 | 1 | feqmptd 5610 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥))) |
15 | 14 | cnveqd 4838 | . . . . 5 ⊢ (𝜑 → ◡𝐴 = ◡(𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥))) |
16 | 15 | imaeq1d 5004 | . . . 4 ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) = (◡(𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥)) “ (V ∖ {𝑌}))) |
17 | suppssof1.s | . . . 4 ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿) | |
18 | 16, 17 | eqsstrrd 3216 | . . 3 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥)) “ (V ∖ {𝑌})) ⊆ 𝐿) |
19 | suppssof1.o | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) | |
20 | funfvex 5571 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝑥 ∈ dom 𝐴) → (𝐴‘𝑥) ∈ V) | |
21 | 20 | funfni 5354 | . . . 4 ⊢ ((𝐴 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ∈ V) |
22 | 3, 21 | sylan 283 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ∈ V) |
23 | 4 | ffvelcdmda 5693 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) ∈ 𝑅) |
24 | 18, 19, 22, 23 | suppssov1 6127 | . 2 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥))) “ (V ∖ {𝑍})) ⊆ 𝐿) |
25 | 13, 24 | eqsstrd 3215 | 1 ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3150 ⊆ wss 3153 {csn 3618 ↦ cmpt 4090 ◡ccnv 4658 “ cima 4662 Fn wfn 5249 ⟶wf 5250 ‘cfv 5254 (class class class)co 5918 ∘𝑓 cof 6128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-of 6130 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |