Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suppssof1 | GIF version |
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
Ref | Expression |
---|---|
suppssof1.s | ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿) |
suppssof1.o | ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) |
suppssof1.a | ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) |
suppssof1.b | ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) |
suppssof1.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
Ref | Expression |
---|---|
suppssof1 | ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssof1.a | . . . . . 6 ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) | |
2 | ffn 5337 | . . . . . 6 ⊢ (𝐴:𝐷⟶𝑉 → 𝐴 Fn 𝐷) | |
3 | 1, 2 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐴 Fn 𝐷) |
4 | suppssof1.b | . . . . . 6 ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) | |
5 | ffn 5337 | . . . . . 6 ⊢ (𝐵:𝐷⟶𝑅 → 𝐵 Fn 𝐷) | |
6 | 4, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐵 Fn 𝐷) |
7 | suppssof1.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
8 | inidm 3331 | . . . . 5 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
9 | eqidd 2166 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) = (𝐴‘𝑥)) | |
10 | eqidd 2166 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) = (𝐵‘𝑥)) | |
11 | 3, 6, 7, 7, 8, 9, 10 | offval 6057 | . . . 4 ⊢ (𝜑 → (𝐴 ∘𝑓 𝑂𝐵) = (𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥)))) |
12 | 11 | cnveqd 4780 | . . 3 ⊢ (𝜑 → ◡(𝐴 ∘𝑓 𝑂𝐵) = ◡(𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥)))) |
13 | 12 | imaeq1d 4945 | . 2 ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) = (◡(𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥))) “ (V ∖ {𝑍}))) |
14 | 1 | feqmptd 5539 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥))) |
15 | 14 | cnveqd 4780 | . . . . 5 ⊢ (𝜑 → ◡𝐴 = ◡(𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥))) |
16 | 15 | imaeq1d 4945 | . . . 4 ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) = (◡(𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥)) “ (V ∖ {𝑌}))) |
17 | suppssof1.s | . . . 4 ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿) | |
18 | 16, 17 | eqsstrrd 3179 | . . 3 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥)) “ (V ∖ {𝑌})) ⊆ 𝐿) |
19 | suppssof1.o | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) | |
20 | funfvex 5503 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝑥 ∈ dom 𝐴) → (𝐴‘𝑥) ∈ V) | |
21 | 20 | funfni 5288 | . . . 4 ⊢ ((𝐴 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ∈ V) |
22 | 3, 21 | sylan 281 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ∈ V) |
23 | 4 | ffvelrnda 5620 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) ∈ 𝑅) |
24 | 18, 19, 22, 23 | suppssov1 6047 | . 2 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥))) “ (V ∖ {𝑍})) ⊆ 𝐿) |
25 | 13, 24 | eqsstrd 3178 | 1 ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∖ cdif 3113 ⊆ wss 3116 {csn 3576 ↦ cmpt 4043 ◡ccnv 4603 “ cima 4607 Fn wfn 5183 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 ∘𝑓 cof 6048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-of 6050 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |