ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssof1 GIF version

Theorem suppssof1 6242
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssof1.s (𝜑 → (𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿)
suppssof1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssof1.a (𝜑𝐴:𝐷𝑉)
suppssof1.b (𝜑𝐵:𝐷𝑅)
suppssof1.d (𝜑𝐷𝑊)
Assertion
Ref Expression
suppssof1 (𝜑 → ((𝐴𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝑣,𝐵   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑣,𝑍
Allowed substitution hints:   𝐴(𝑣)   𝐷(𝑣)   𝐿(𝑣)   𝑉(𝑣)   𝑊(𝑣)

Proof of Theorem suppssof1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 suppssof1.a . . . . . 6 (𝜑𝐴:𝐷𝑉)
2 ffn 5473 . . . . . 6 (𝐴:𝐷𝑉𝐴 Fn 𝐷)
31, 2syl 14 . . . . 5 (𝜑𝐴 Fn 𝐷)
4 suppssof1.b . . . . . 6 (𝜑𝐵:𝐷𝑅)
5 ffn 5473 . . . . . 6 (𝐵:𝐷𝑅𝐵 Fn 𝐷)
64, 5syl 14 . . . . 5 (𝜑𝐵 Fn 𝐷)
7 suppssof1.d . . . . 5 (𝜑𝐷𝑊)
8 inidm 3413 . . . . 5 (𝐷𝐷) = 𝐷
9 eqidd 2230 . . . . 5 ((𝜑𝑥𝐷) → (𝐴𝑥) = (𝐴𝑥))
10 eqidd 2230 . . . . 5 ((𝜑𝑥𝐷) → (𝐵𝑥) = (𝐵𝑥))
113, 6, 7, 7, 8, 9, 10offval 6232 . . . 4 (𝜑 → (𝐴𝑓 𝑂𝐵) = (𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))))
1211cnveqd 4898 . . 3 (𝜑(𝐴𝑓 𝑂𝐵) = (𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))))
1312imaeq1d 5067 . 2 (𝜑 → ((𝐴𝑓 𝑂𝐵) “ (V ∖ {𝑍})) = ((𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))) “ (V ∖ {𝑍})))
141feqmptd 5689 . . . . . 6 (𝜑𝐴 = (𝑥𝐷 ↦ (𝐴𝑥)))
1514cnveqd 4898 . . . . 5 (𝜑𝐴 = (𝑥𝐷 ↦ (𝐴𝑥)))
1615imaeq1d 5067 . . . 4 (𝜑 → (𝐴 “ (V ∖ {𝑌})) = ((𝑥𝐷 ↦ (𝐴𝑥)) “ (V ∖ {𝑌})))
17 suppssof1.s . . . 4 (𝜑 → (𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿)
1816, 17eqsstrrd 3261 . . 3 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑥)) “ (V ∖ {𝑌})) ⊆ 𝐿)
19 suppssof1.o . . 3 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
20 funfvex 5646 . . . . 5 ((Fun 𝐴𝑥 ∈ dom 𝐴) → (𝐴𝑥) ∈ V)
2120funfni 5423 . . . 4 ((𝐴 Fn 𝐷𝑥𝐷) → (𝐴𝑥) ∈ V)
223, 21sylan 283 . . 3 ((𝜑𝑥𝐷) → (𝐴𝑥) ∈ V)
234ffvelcdmda 5772 . . 3 ((𝜑𝑥𝐷) → (𝐵𝑥) ∈ 𝑅)
2418, 19, 22, 23suppssov1 6221 . 2 (𝜑 → ((𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))) “ (V ∖ {𝑍})) ⊆ 𝐿)
2513, 24eqsstrd 3260 1 (𝜑 → ((𝐴𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  cdif 3194  wss 3197  {csn 3666  cmpt 4145  ccnv 4718  cima 4722   Fn wfn 5313  wf 5314  cfv 5318  (class class class)co 6007  𝑓 cof 6222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator