Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suppssof1 | GIF version |
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
Ref | Expression |
---|---|
suppssof1.s | ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿) |
suppssof1.o | ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) |
suppssof1.a | ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) |
suppssof1.b | ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) |
suppssof1.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
Ref | Expression |
---|---|
suppssof1 | ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssof1.a | . . . . . 6 ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) | |
2 | ffn 5347 | . . . . . 6 ⊢ (𝐴:𝐷⟶𝑉 → 𝐴 Fn 𝐷) | |
3 | 1, 2 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐴 Fn 𝐷) |
4 | suppssof1.b | . . . . . 6 ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) | |
5 | ffn 5347 | . . . . . 6 ⊢ (𝐵:𝐷⟶𝑅 → 𝐵 Fn 𝐷) | |
6 | 4, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐵 Fn 𝐷) |
7 | suppssof1.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
8 | inidm 3336 | . . . . 5 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
9 | eqidd 2171 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) = (𝐴‘𝑥)) | |
10 | eqidd 2171 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) = (𝐵‘𝑥)) | |
11 | 3, 6, 7, 7, 8, 9, 10 | offval 6068 | . . . 4 ⊢ (𝜑 → (𝐴 ∘𝑓 𝑂𝐵) = (𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥)))) |
12 | 11 | cnveqd 4787 | . . 3 ⊢ (𝜑 → ◡(𝐴 ∘𝑓 𝑂𝐵) = ◡(𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥)))) |
13 | 12 | imaeq1d 4952 | . 2 ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) = (◡(𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥))) “ (V ∖ {𝑍}))) |
14 | 1 | feqmptd 5549 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥))) |
15 | 14 | cnveqd 4787 | . . . . 5 ⊢ (𝜑 → ◡𝐴 = ◡(𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥))) |
16 | 15 | imaeq1d 4952 | . . . 4 ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) = (◡(𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥)) “ (V ∖ {𝑌}))) |
17 | suppssof1.s | . . . 4 ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿) | |
18 | 16, 17 | eqsstrrd 3184 | . . 3 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥)) “ (V ∖ {𝑌})) ⊆ 𝐿) |
19 | suppssof1.o | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) | |
20 | funfvex 5513 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝑥 ∈ dom 𝐴) → (𝐴‘𝑥) ∈ V) | |
21 | 20 | funfni 5298 | . . . 4 ⊢ ((𝐴 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ∈ V) |
22 | 3, 21 | sylan 281 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ∈ V) |
23 | 4 | ffvelrnda 5631 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) ∈ 𝑅) |
24 | 18, 19, 22, 23 | suppssov1 6058 | . 2 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥))) “ (V ∖ {𝑍})) ⊆ 𝐿) |
25 | 13, 24 | eqsstrd 3183 | 1 ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∖ cdif 3118 ⊆ wss 3121 {csn 3583 ↦ cmpt 4050 ◡ccnv 4610 “ cima 4614 Fn wfn 5193 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 ∘𝑓 cof 6059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-of 6061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |