| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suppssof1 | GIF version | ||
| Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| suppssof1.s | ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿) |
| suppssof1.o | ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) |
| suppssof1.a | ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) |
| suppssof1.b | ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) |
| suppssof1.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| suppssof1 | ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssof1.a | . . . . . 6 ⊢ (𝜑 → 𝐴:𝐷⟶𝑉) | |
| 2 | ffn 5431 | . . . . . 6 ⊢ (𝐴:𝐷⟶𝑉 → 𝐴 Fn 𝐷) | |
| 3 | 1, 2 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐴 Fn 𝐷) |
| 4 | suppssof1.b | . . . . . 6 ⊢ (𝜑 → 𝐵:𝐷⟶𝑅) | |
| 5 | ffn 5431 | . . . . . 6 ⊢ (𝐵:𝐷⟶𝑅 → 𝐵 Fn 𝐷) | |
| 6 | 4, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐵 Fn 𝐷) |
| 7 | suppssof1.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 8 | inidm 3383 | . . . . 5 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
| 9 | eqidd 2207 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) = (𝐴‘𝑥)) | |
| 10 | eqidd 2207 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) = (𝐵‘𝑥)) | |
| 11 | 3, 6, 7, 7, 8, 9, 10 | offval 6173 | . . . 4 ⊢ (𝜑 → (𝐴 ∘𝑓 𝑂𝐵) = (𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥)))) |
| 12 | 11 | cnveqd 4858 | . . 3 ⊢ (𝜑 → ◡(𝐴 ∘𝑓 𝑂𝐵) = ◡(𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥)))) |
| 13 | 12 | imaeq1d 5026 | . 2 ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) = (◡(𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥))) “ (V ∖ {𝑍}))) |
| 14 | 1 | feqmptd 5639 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥))) |
| 15 | 14 | cnveqd 4858 | . . . . 5 ⊢ (𝜑 → ◡𝐴 = ◡(𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥))) |
| 16 | 15 | imaeq1d 5026 | . . . 4 ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) = (◡(𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥)) “ (V ∖ {𝑌}))) |
| 17 | suppssof1.s | . . . 4 ⊢ (𝜑 → (◡𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿) | |
| 18 | 16, 17 | eqsstrrd 3231 | . . 3 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ (𝐴‘𝑥)) “ (V ∖ {𝑌})) ⊆ 𝐿) |
| 19 | suppssof1.o | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑅) → (𝑌𝑂𝑣) = 𝑍) | |
| 20 | funfvex 5600 | . . . . 5 ⊢ ((Fun 𝐴 ∧ 𝑥 ∈ dom 𝐴) → (𝐴‘𝑥) ∈ V) | |
| 21 | 20 | funfni 5381 | . . . 4 ⊢ ((𝐴 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ∈ V) |
| 22 | 3, 21 | sylan 283 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐴‘𝑥) ∈ V) |
| 23 | 4 | ffvelcdmda 5722 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐵‘𝑥) ∈ 𝑅) |
| 24 | 18, 19, 22, 23 | suppssov1 6162 | . 2 ⊢ (𝜑 → (◡(𝑥 ∈ 𝐷 ↦ ((𝐴‘𝑥)𝑂(𝐵‘𝑥))) “ (V ∖ {𝑍})) ⊆ 𝐿) |
| 25 | 13, 24 | eqsstrd 3230 | 1 ⊢ (𝜑 → (◡(𝐴 ∘𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∖ cdif 3164 ⊆ wss 3167 {csn 3634 ↦ cmpt 4109 ◡ccnv 4678 “ cima 4682 Fn wfn 5271 ⟶wf 5272 ‘cfv 5276 (class class class)co 5951 ∘𝑓 cof 6163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-of 6165 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |