ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssof1 GIF version

Theorem suppssof1 6067
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssof1.s (𝜑 → (𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿)
suppssof1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssof1.a (𝜑𝐴:𝐷𝑉)
suppssof1.b (𝜑𝐵:𝐷𝑅)
suppssof1.d (𝜑𝐷𝑊)
Assertion
Ref Expression
suppssof1 (𝜑 → ((𝐴𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝑣,𝐵   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑣,𝑍
Allowed substitution hints:   𝐴(𝑣)   𝐷(𝑣)   𝐿(𝑣)   𝑉(𝑣)   𝑊(𝑣)

Proof of Theorem suppssof1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 suppssof1.a . . . . . 6 (𝜑𝐴:𝐷𝑉)
2 ffn 5337 . . . . . 6 (𝐴:𝐷𝑉𝐴 Fn 𝐷)
31, 2syl 14 . . . . 5 (𝜑𝐴 Fn 𝐷)
4 suppssof1.b . . . . . 6 (𝜑𝐵:𝐷𝑅)
5 ffn 5337 . . . . . 6 (𝐵:𝐷𝑅𝐵 Fn 𝐷)
64, 5syl 14 . . . . 5 (𝜑𝐵 Fn 𝐷)
7 suppssof1.d . . . . 5 (𝜑𝐷𝑊)
8 inidm 3331 . . . . 5 (𝐷𝐷) = 𝐷
9 eqidd 2166 . . . . 5 ((𝜑𝑥𝐷) → (𝐴𝑥) = (𝐴𝑥))
10 eqidd 2166 . . . . 5 ((𝜑𝑥𝐷) → (𝐵𝑥) = (𝐵𝑥))
113, 6, 7, 7, 8, 9, 10offval 6057 . . . 4 (𝜑 → (𝐴𝑓 𝑂𝐵) = (𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))))
1211cnveqd 4780 . . 3 (𝜑(𝐴𝑓 𝑂𝐵) = (𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))))
1312imaeq1d 4945 . 2 (𝜑 → ((𝐴𝑓 𝑂𝐵) “ (V ∖ {𝑍})) = ((𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))) “ (V ∖ {𝑍})))
141feqmptd 5539 . . . . . 6 (𝜑𝐴 = (𝑥𝐷 ↦ (𝐴𝑥)))
1514cnveqd 4780 . . . . 5 (𝜑𝐴 = (𝑥𝐷 ↦ (𝐴𝑥)))
1615imaeq1d 4945 . . . 4 (𝜑 → (𝐴 “ (V ∖ {𝑌})) = ((𝑥𝐷 ↦ (𝐴𝑥)) “ (V ∖ {𝑌})))
17 suppssof1.s . . . 4 (𝜑 → (𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿)
1816, 17eqsstrrd 3179 . . 3 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑥)) “ (V ∖ {𝑌})) ⊆ 𝐿)
19 suppssof1.o . . 3 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
20 funfvex 5503 . . . . 5 ((Fun 𝐴𝑥 ∈ dom 𝐴) → (𝐴𝑥) ∈ V)
2120funfni 5288 . . . 4 ((𝐴 Fn 𝐷𝑥𝐷) → (𝐴𝑥) ∈ V)
223, 21sylan 281 . . 3 ((𝜑𝑥𝐷) → (𝐴𝑥) ∈ V)
234ffvelrnda 5620 . . 3 ((𝜑𝑥𝐷) → (𝐵𝑥) ∈ 𝑅)
2418, 19, 22, 23suppssov1 6047 . 2 (𝜑 → ((𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))) “ (V ∖ {𝑍})) ⊆ 𝐿)
2513, 24eqsstrd 3178 1 (𝜑 → ((𝐴𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  cdif 3113  wss 3116  {csn 3576  cmpt 4043  ccnv 4603  cima 4607   Fn wfn 5183  wf 5184  cfv 5188  (class class class)co 5842  𝑓 cof 6048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator