ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssof1 GIF version

Theorem suppssof1 6078
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssof1.s (𝜑 → (𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿)
suppssof1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssof1.a (𝜑𝐴:𝐷𝑉)
suppssof1.b (𝜑𝐵:𝐷𝑅)
suppssof1.d (𝜑𝐷𝑊)
Assertion
Ref Expression
suppssof1 (𝜑 → ((𝐴𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝑣,𝐵   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑣,𝑍
Allowed substitution hints:   𝐴(𝑣)   𝐷(𝑣)   𝐿(𝑣)   𝑉(𝑣)   𝑊(𝑣)

Proof of Theorem suppssof1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 suppssof1.a . . . . . 6 (𝜑𝐴:𝐷𝑉)
2 ffn 5347 . . . . . 6 (𝐴:𝐷𝑉𝐴 Fn 𝐷)
31, 2syl 14 . . . . 5 (𝜑𝐴 Fn 𝐷)
4 suppssof1.b . . . . . 6 (𝜑𝐵:𝐷𝑅)
5 ffn 5347 . . . . . 6 (𝐵:𝐷𝑅𝐵 Fn 𝐷)
64, 5syl 14 . . . . 5 (𝜑𝐵 Fn 𝐷)
7 suppssof1.d . . . . 5 (𝜑𝐷𝑊)
8 inidm 3336 . . . . 5 (𝐷𝐷) = 𝐷
9 eqidd 2171 . . . . 5 ((𝜑𝑥𝐷) → (𝐴𝑥) = (𝐴𝑥))
10 eqidd 2171 . . . . 5 ((𝜑𝑥𝐷) → (𝐵𝑥) = (𝐵𝑥))
113, 6, 7, 7, 8, 9, 10offval 6068 . . . 4 (𝜑 → (𝐴𝑓 𝑂𝐵) = (𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))))
1211cnveqd 4787 . . 3 (𝜑(𝐴𝑓 𝑂𝐵) = (𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))))
1312imaeq1d 4952 . 2 (𝜑 → ((𝐴𝑓 𝑂𝐵) “ (V ∖ {𝑍})) = ((𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))) “ (V ∖ {𝑍})))
141feqmptd 5549 . . . . . 6 (𝜑𝐴 = (𝑥𝐷 ↦ (𝐴𝑥)))
1514cnveqd 4787 . . . . 5 (𝜑𝐴 = (𝑥𝐷 ↦ (𝐴𝑥)))
1615imaeq1d 4952 . . . 4 (𝜑 → (𝐴 “ (V ∖ {𝑌})) = ((𝑥𝐷 ↦ (𝐴𝑥)) “ (V ∖ {𝑌})))
17 suppssof1.s . . . 4 (𝜑 → (𝐴 “ (V ∖ {𝑌})) ⊆ 𝐿)
1816, 17eqsstrrd 3184 . . 3 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑥)) “ (V ∖ {𝑌})) ⊆ 𝐿)
19 suppssof1.o . . 3 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
20 funfvex 5513 . . . . 5 ((Fun 𝐴𝑥 ∈ dom 𝐴) → (𝐴𝑥) ∈ V)
2120funfni 5298 . . . 4 ((𝐴 Fn 𝐷𝑥𝐷) → (𝐴𝑥) ∈ V)
223, 21sylan 281 . . 3 ((𝜑𝑥𝐷) → (𝐴𝑥) ∈ V)
234ffvelrnda 5631 . . 3 ((𝜑𝑥𝐷) → (𝐵𝑥) ∈ 𝑅)
2418, 19, 22, 23suppssov1 6058 . 2 (𝜑 → ((𝑥𝐷 ↦ ((𝐴𝑥)𝑂(𝐵𝑥))) “ (V ∖ {𝑍})) ⊆ 𝐿)
2513, 24eqsstrd 3183 1 (𝜑 → ((𝐴𝑓 𝑂𝐵) “ (V ∖ {𝑍})) ⊆ 𝐿)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  cdif 3118  wss 3121  {csn 3583  cmpt 4050  ccnv 4610  cima 4614   Fn wfn 5193  wf 5194  cfv 5198  (class class class)co 5853  𝑓 cof 6059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator