ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuin GIF version

Theorem djuin 6957
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
Assertion
Ref Expression
djuin ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅

Proof of Theorem djuin
StepHypRef Expression
1 df-ima 4560 . . 3 (inl “ 𝐴) = ran (inl ↾ 𝐴)
2 df-ima 4560 . . 3 (inr “ 𝐵) = ran (inr ↾ 𝐵)
31, 2ineq12i 3280 . 2 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵))
4 djuinr 6956 . 2 (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅
53, 4eqtri 2161 1 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1332  cin 3075  c0 3368  ran crn 4548  cres 4549  cima 4550  inlcinl 6938  inrcinr 6939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-1o 6321  df-inl 6940  df-inr 6941
This theorem is referenced by:  caseinl  6984  caseinr  6985  endjusym  6989  ctssdccl  7004  dju1p1e2  7070  endjudisj  7083  djuen  7084
  Copyright terms: Public domain W3C validator