ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuin GIF version

Theorem djuin 6864
Description: The images of any classes under right and left injection produce disjoint sets. (Contributed by Jim Kingdon, 21-Jun-2022.) (Proof shortened by BJ, 9-Jul-2023.)
Assertion
Ref Expression
djuin ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅

Proof of Theorem djuin
StepHypRef Expression
1 df-ima 4490 . . 3 (inl “ 𝐴) = ran (inl ↾ 𝐴)
2 df-ima 4490 . . 3 (inr “ 𝐵) = ran (inr ↾ 𝐵)
31, 2ineq12i 3222 . 2 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵))
4 djuinr 6863 . 2 (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅
53, 4eqtri 2120 1 ((inl “ 𝐴) ∩ (inr “ 𝐵)) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1299  cin 3020  c0 3310  ran crn 4478  cres 4479  cima 4480  inlcinl 6845  inrcinr 6846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-1st 5969  df-2nd 5970  df-1o 6243  df-inl 6847  df-inr 6848
This theorem is referenced by:  caseinl  6891  caseinr  6892  endjusym  6896  ctssdclemr  6911  dju1p1e2  6962  endjudisj  6970  djuen  6971
  Copyright terms: Public domain W3C validator