Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > carden2bex | GIF version |
Description: If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.) |
Ref | Expression |
---|---|
carden2bex | ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐴) = (card‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enen2 6819 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → (𝑦 ≈ 𝐴 ↔ 𝑦 ≈ 𝐵)) | |
2 | 1 | rabbidv 2719 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
3 | 2 | inteqd 3836 | . . 3 ⊢ (𝐴 ≈ 𝐵 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
4 | 3 | adantr 274 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
5 | cardval3ex 7162 | . . 3 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
6 | 5 | adantl 275 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
7 | entr 6762 | . . . . . 6 ⊢ ((𝑥 ≈ 𝐴 ∧ 𝐴 ≈ 𝐵) → 𝑥 ≈ 𝐵) | |
8 | 7 | expcom 115 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ≈ 𝐴 → 𝑥 ≈ 𝐵)) |
9 | 8 | reximdv 2571 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → ∃𝑥 ∈ On 𝑥 ≈ 𝐵)) |
10 | 9 | imp 123 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → ∃𝑥 ∈ On 𝑥 ≈ 𝐵) |
11 | cardval3ex 7162 | . . 3 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐵 → (card‘𝐵) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) | |
12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐵) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
13 | 4, 6, 12 | 3eqtr4d 2213 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐴) = (card‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∃wrex 2449 {crab 2452 ∩ cint 3831 class class class wbr 3989 Oncon0 4348 ‘cfv 5198 ≈ cen 6716 cardccrd 7156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-er 6513 df-en 6719 df-card 7157 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |