| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > carden2bex | GIF version | ||
| Description: If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| carden2bex | ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐴) = (card‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enen2 7010 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → (𝑦 ≈ 𝐴 ↔ 𝑦 ≈ 𝐵)) | |
| 2 | 1 | rabbidv 2788 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
| 3 | 2 | inteqd 3928 | . . 3 ⊢ (𝐴 ≈ 𝐵 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
| 4 | 3 | adantr 276 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
| 5 | cardval3ex 7365 | . . 3 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 6 | 5 | adantl 277 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 7 | entr 6944 | . . . . . 6 ⊢ ((𝑥 ≈ 𝐴 ∧ 𝐴 ≈ 𝐵) → 𝑥 ≈ 𝐵) | |
| 8 | 7 | expcom 116 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ≈ 𝐴 → 𝑥 ≈ 𝐵)) |
| 9 | 8 | reximdv 2631 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → ∃𝑥 ∈ On 𝑥 ≈ 𝐵)) |
| 10 | 9 | imp 124 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → ∃𝑥 ∈ On 𝑥 ≈ 𝐵) |
| 11 | cardval3ex 7365 | . . 3 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐵 → (card‘𝐵) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) | |
| 12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐵) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
| 13 | 4, 6, 12 | 3eqtr4d 2272 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐴) = (card‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∃wrex 2509 {crab 2512 ∩ cint 3923 class class class wbr 4083 Oncon0 4454 ‘cfv 5318 ≈ cen 6893 cardccrd 7357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-er 6688 df-en 6896 df-card 7359 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |