ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  carden2bex GIF version

Theorem carden2bex 7126
Description: If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
carden2bex ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = (card‘𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem carden2bex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 enen2 6788 . . . . 5 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
21rabbidv 2701 . . . 4 (𝐴𝐵 → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦𝐵})
32inteqd 3814 . . 3 (𝐴𝐵 {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦𝐵})
43adantr 274 . 2 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦𝐵})
5 cardval3ex 7122 . . 3 (∃𝑥 ∈ On 𝑥𝐴 → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
65adantl 275 . 2 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
7 entr 6731 . . . . . 6 ((𝑥𝐴𝐴𝐵) → 𝑥𝐵)
87expcom 115 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
98reximdv 2558 . . . 4 (𝐴𝐵 → (∃𝑥 ∈ On 𝑥𝐴 → ∃𝑥 ∈ On 𝑥𝐵))
109imp 123 . . 3 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → ∃𝑥 ∈ On 𝑥𝐵)
11 cardval3ex 7122 . . 3 (∃𝑥 ∈ On 𝑥𝐵 → (card‘𝐵) = {𝑦 ∈ On ∣ 𝑦𝐵})
1210, 11syl 14 . 2 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐵) = {𝑦 ∈ On ∣ 𝑦𝐵})
134, 6, 123eqtr4d 2200 1 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = (card‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wrex 2436  {crab 2439   cint 3809   class class class wbr 3967  Oncon0 4325  cfv 5172  cen 6685  cardccrd 7116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-br 3968  df-opab 4028  df-mpt 4029  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-er 6482  df-en 6688  df-card 7117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator