![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > carden2bex | GIF version |
Description: If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.) |
Ref | Expression |
---|---|
carden2bex | β’ ((π΄ β π΅ β§ βπ₯ β On π₯ β π΄) β (cardβπ΄) = (cardβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enen2 6843 | . . . . 5 β’ (π΄ β π΅ β (π¦ β π΄ β π¦ β π΅)) | |
2 | 1 | rabbidv 2728 | . . . 4 β’ (π΄ β π΅ β {π¦ β On β£ π¦ β π΄} = {π¦ β On β£ π¦ β π΅}) |
3 | 2 | inteqd 3851 | . . 3 β’ (π΄ β π΅ β β© {π¦ β On β£ π¦ β π΄} = β© {π¦ β On β£ π¦ β π΅}) |
4 | 3 | adantr 276 | . 2 β’ ((π΄ β π΅ β§ βπ₯ β On π₯ β π΄) β β© {π¦ β On β£ π¦ β π΄} = β© {π¦ β On β£ π¦ β π΅}) |
5 | cardval3ex 7186 | . . 3 β’ (βπ₯ β On π₯ β π΄ β (cardβπ΄) = β© {π¦ β On β£ π¦ β π΄}) | |
6 | 5 | adantl 277 | . 2 β’ ((π΄ β π΅ β§ βπ₯ β On π₯ β π΄) β (cardβπ΄) = β© {π¦ β On β£ π¦ β π΄}) |
7 | entr 6786 | . . . . . 6 β’ ((π₯ β π΄ β§ π΄ β π΅) β π₯ β π΅) | |
8 | 7 | expcom 116 | . . . . 5 β’ (π΄ β π΅ β (π₯ β π΄ β π₯ β π΅)) |
9 | 8 | reximdv 2578 | . . . 4 β’ (π΄ β π΅ β (βπ₯ β On π₯ β π΄ β βπ₯ β On π₯ β π΅)) |
10 | 9 | imp 124 | . . 3 β’ ((π΄ β π΅ β§ βπ₯ β On π₯ β π΄) β βπ₯ β On π₯ β π΅) |
11 | cardval3ex 7186 | . . 3 β’ (βπ₯ β On π₯ β π΅ β (cardβπ΅) = β© {π¦ β On β£ π¦ β π΅}) | |
12 | 10, 11 | syl 14 | . 2 β’ ((π΄ β π΅ β§ βπ₯ β On π₯ β π΄) β (cardβπ΅) = β© {π¦ β On β£ π¦ β π΅}) |
13 | 4, 6, 12 | 3eqtr4d 2220 | 1 β’ ((π΄ β π΅ β§ βπ₯ β On π₯ β π΄) β (cardβπ΄) = (cardβπ΅)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 βwrex 2456 {crab 2459 β© cint 3846 class class class wbr 4005 Oncon0 4365 βcfv 5218 β cen 6740 cardccrd 7180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-er 6537 df-en 6743 df-card 7181 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |