| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > carden2bex | GIF version | ||
| Description: If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| carden2bex | ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐴) = (card‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enen2 6945 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → (𝑦 ≈ 𝐴 ↔ 𝑦 ≈ 𝐵)) | |
| 2 | 1 | rabbidv 2762 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
| 3 | 2 | inteqd 3892 | . . 3 ⊢ (𝐴 ≈ 𝐵 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
| 4 | 3 | adantr 276 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
| 5 | cardval3ex 7299 | . . 3 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) | |
| 6 | 5 | adantl 277 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐴) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐴}) |
| 7 | entr 6883 | . . . . . 6 ⊢ ((𝑥 ≈ 𝐴 ∧ 𝐴 ≈ 𝐵) → 𝑥 ≈ 𝐵) | |
| 8 | 7 | expcom 116 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ≈ 𝐴 → 𝑥 ≈ 𝐵)) |
| 9 | 8 | reximdv 2608 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (∃𝑥 ∈ On 𝑥 ≈ 𝐴 → ∃𝑥 ∈ On 𝑥 ≈ 𝐵)) |
| 10 | 9 | imp 124 | . . 3 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → ∃𝑥 ∈ On 𝑥 ≈ 𝐵) |
| 11 | cardval3ex 7299 | . . 3 ⊢ (∃𝑥 ∈ On 𝑥 ≈ 𝐵 → (card‘𝐵) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) | |
| 12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐵) = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
| 13 | 4, 6, 12 | 3eqtr4d 2249 | 1 ⊢ ((𝐴 ≈ 𝐵 ∧ ∃𝑥 ∈ On 𝑥 ≈ 𝐴) → (card‘𝐴) = (card‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wrex 2486 {crab 2489 ∩ cint 3887 class class class wbr 4047 Oncon0 4414 ‘cfv 5276 ≈ cen 6832 cardccrd 7291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-er 6627 df-en 6835 df-card 7293 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |