ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  carden2bex GIF version

Theorem carden2bex 7370
Description: If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
carden2bex ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = (card‘𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem carden2bex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 enen2 7010 . . . . 5 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
21rabbidv 2788 . . . 4 (𝐴𝐵 → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦𝐵})
32inteqd 3928 . . 3 (𝐴𝐵 {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦𝐵})
43adantr 276 . 2 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦𝐵})
5 cardval3ex 7365 . . 3 (∃𝑥 ∈ On 𝑥𝐴 → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
65adantl 277 . 2 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
7 entr 6944 . . . . . 6 ((𝑥𝐴𝐴𝐵) → 𝑥𝐵)
87expcom 116 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
98reximdv 2631 . . . 4 (𝐴𝐵 → (∃𝑥 ∈ On 𝑥𝐴 → ∃𝑥 ∈ On 𝑥𝐵))
109imp 124 . . 3 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → ∃𝑥 ∈ On 𝑥𝐵)
11 cardval3ex 7365 . . 3 (∃𝑥 ∈ On 𝑥𝐵 → (card‘𝐵) = {𝑦 ∈ On ∣ 𝑦𝐵})
1210, 11syl 14 . 2 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐵) = {𝑦 ∈ On ∣ 𝑦𝐵})
134, 6, 123eqtr4d 2272 1 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = (card‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wrex 2509  {crab 2512   cint 3923   class class class wbr 4083  Oncon0 4454  cfv 5318  cen 6893  cardccrd 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-er 6688  df-en 6896  df-card 7359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator