ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  carden2bex GIF version

Theorem carden2bex 7145
Description: If two numerable sets are equinumerous, then they have equal cardinalities. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
carden2bex ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = (card‘𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem carden2bex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 enen2 6807 . . . . 5 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
21rabbidv 2715 . . . 4 (𝐴𝐵 → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦𝐵})
32inteqd 3829 . . 3 (𝐴𝐵 {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦𝐵})
43adantr 274 . 2 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → {𝑦 ∈ On ∣ 𝑦𝐴} = {𝑦 ∈ On ∣ 𝑦𝐵})
5 cardval3ex 7141 . . 3 (∃𝑥 ∈ On 𝑥𝐴 → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
65adantl 275 . 2 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
7 entr 6750 . . . . . 6 ((𝑥𝐴𝐴𝐵) → 𝑥𝐵)
87expcom 115 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
98reximdv 2567 . . . 4 (𝐴𝐵 → (∃𝑥 ∈ On 𝑥𝐴 → ∃𝑥 ∈ On 𝑥𝐵))
109imp 123 . . 3 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → ∃𝑥 ∈ On 𝑥𝐵)
11 cardval3ex 7141 . . 3 (∃𝑥 ∈ On 𝑥𝐵 → (card‘𝐵) = {𝑦 ∈ On ∣ 𝑦𝐵})
1210, 11syl 14 . 2 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐵) = {𝑦 ∈ On ∣ 𝑦𝐵})
134, 6, 123eqtr4d 2208 1 ((𝐴𝐵 ∧ ∃𝑥 ∈ On 𝑥𝐴) → (card‘𝐴) = (card‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wrex 2445  {crab 2448   cint 3824   class class class wbr 3982  Oncon0 4341  cfv 5188  cen 6704  cardccrd 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707  df-card 7136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator