ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndval2 GIF version

Theorem 2ndval2 6209
Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
Assertion
Ref Expression
2ndval2 (𝐴 ∈ (V × V) → (2nd𝐴) = {𝐴})

Proof of Theorem 2ndval2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4721 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 2763 . . . . . 6 𝑥 ∈ V
3 vex 2763 . . . . . 6 𝑦 ∈ V
42, 3op2nd 6200 . . . . 5 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
52, 3op2ndb 5149 . . . . 5 {⟨𝑥, 𝑦⟩} = 𝑦
64, 5eqtr4i 2217 . . . 4 (2nd ‘⟨𝑥, 𝑦⟩) = {⟨𝑥, 𝑦⟩}
7 fveq2 5554 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = (2nd ‘⟨𝑥, 𝑦⟩))
8 sneq 3629 . . . . . . . 8 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
98cnveqd 4838 . . . . . . 7 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
109inteqd 3875 . . . . . 6 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
1110inteqd 3875 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
1211inteqd 3875 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
136, 7, 123eqtr4a 2252 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = {𝐴})
1413exlimivv 1908 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = {𝐴})
151, 14sylbi 121 1 (𝐴 ∈ (V × V) → (2nd𝐴) = {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  {csn 3618  cop 3621   cint 3870   × cxp 4657  ccnv 4658  cfv 5254  2nd c2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fv 5262  df-2nd 6194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator