ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndval2 GIF version

Theorem 2ndval2 6022
Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.)
Assertion
Ref Expression
2ndval2 (𝐴 ∈ (V × V) → (2nd𝐴) = {𝐴})

Proof of Theorem 2ndval2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4571 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 vex 2663 . . . . . 6 𝑥 ∈ V
3 vex 2663 . . . . . 6 𝑦 ∈ V
42, 3op2nd 6013 . . . . 5 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
52, 3op2ndb 4992 . . . . 5 {⟨𝑥, 𝑦⟩} = 𝑦
64, 5eqtr4i 2141 . . . 4 (2nd ‘⟨𝑥, 𝑦⟩) = {⟨𝑥, 𝑦⟩}
7 fveq2 5389 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = (2nd ‘⟨𝑥, 𝑦⟩))
8 sneq 3508 . . . . . . . 8 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
98cnveqd 4685 . . . . . . 7 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
109inteqd 3746 . . . . . 6 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
1110inteqd 3746 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
1211inteqd 3746 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
136, 7, 123eqtr4a 2176 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = {𝐴})
1413exlimivv 1852 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = {𝐴})
151, 14sylbi 120 1 (𝐴 ∈ (V × V) → (2nd𝐴) = {𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1316  wex 1453  wcel 1465  Vcvv 2660  {csn 3497  cop 3500   cint 3741   × cxp 4507  ccnv 4508  cfv 5093  2nd c2nd 6005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-sbc 2883  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-iota 5058  df-fun 5095  df-fv 5101  df-2nd 6007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator