| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ndval2 | GIF version | ||
| Description: Alternate value of the function that extracts the second member of an ordered pair. Definition 5.13 (ii) of [Monk1] p. 52. (Contributed by NM, 18-Aug-2006.) |
| Ref | Expression |
|---|---|
| 2ndval2 | ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv 4726 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 2 | vex 2766 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 2766 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | op2nd 6214 | . . . . 5 ⊢ (2nd ‘〈𝑥, 𝑦〉) = 𝑦 |
| 5 | 2, 3 | op2ndb 5154 | . . . . 5 ⊢ ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉} = 𝑦 |
| 6 | 4, 5 | eqtr4i 2220 | . . . 4 ⊢ (2nd ‘〈𝑥, 𝑦〉) = ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉} |
| 7 | fveq2 5561 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = (2nd ‘〈𝑥, 𝑦〉)) | |
| 8 | sneq 3634 | . . . . . . . 8 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → {𝐴} = {〈𝑥, 𝑦〉}) | |
| 9 | 8 | cnveqd 4843 | . . . . . . 7 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ◡{𝐴} = ◡{〈𝑥, 𝑦〉}) |
| 10 | 9 | inteqd 3880 | . . . . . 6 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ◡{𝐴} = ∩ ◡{〈𝑥, 𝑦〉}) |
| 11 | 10 | inteqd 3880 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ∩ ◡{𝐴} = ∩ ∩ ◡{〈𝑥, 𝑦〉}) |
| 12 | 11 | inteqd 3880 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∩ ∩ ∩ ◡{𝐴} = ∩ ∩ ∩ ◡{〈𝑥, 𝑦〉}) |
| 13 | 6, 7, 12 | 3eqtr4a 2255 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| 14 | 13 | exlimivv 1911 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| 15 | 1, 14 | sylbi 121 | 1 ⊢ (𝐴 ∈ (V × V) → (2nd ‘𝐴) = ∩ ∩ ∩ ◡{𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 {csn 3623 〈cop 3626 ∩ cint 3875 × cxp 4662 ◡ccnv 4663 ‘cfv 5259 2nd c2nd 6206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fv 5267 df-2nd 6208 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |