| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > offval3 | GIF version | ||
| Description: General value of (𝐹 ∘𝑓 𝑅𝐺) with no assumptions on functionality of 𝐹 and 𝐺. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| offval3 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ V) |
| 3 | elex 2774 | . . 3 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
| 4 | 3 | adantl 277 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
| 5 | dmexg 4931 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
| 6 | inex1g 4170 | . . . 4 ⊢ (dom 𝐹 ∈ V → (dom 𝐹 ∩ dom 𝐺) ∈ V) | |
| 7 | mptexg 5790 | . . . 4 ⊢ ((dom 𝐹 ∩ dom 𝐺) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) | |
| 8 | 5, 6, 7 | 3syl 17 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
| 9 | 8 | adantr 276 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
| 10 | dmeq 4867 | . . . . 5 ⊢ (𝑎 = 𝐹 → dom 𝑎 = dom 𝐹) | |
| 11 | dmeq 4867 | . . . . 5 ⊢ (𝑏 = 𝐺 → dom 𝑏 = dom 𝐺) | |
| 12 | 10, 11 | ineqan12d 3367 | . . . 4 ⊢ ((𝑎 = 𝐹 ∧ 𝑏 = 𝐺) → (dom 𝑎 ∩ dom 𝑏) = (dom 𝐹 ∩ dom 𝐺)) |
| 13 | fveq1 5560 | . . . . 5 ⊢ (𝑎 = 𝐹 → (𝑎‘𝑥) = (𝐹‘𝑥)) | |
| 14 | fveq1 5560 | . . . . 5 ⊢ (𝑏 = 𝐺 → (𝑏‘𝑥) = (𝐺‘𝑥)) | |
| 15 | 13, 14 | oveqan12d 5944 | . . . 4 ⊢ ((𝑎 = 𝐹 ∧ 𝑏 = 𝐺) → ((𝑎‘𝑥)𝑅(𝑏‘𝑥)) = ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
| 16 | 12, 15 | mpteq12dv 4116 | . . 3 ⊢ ((𝑎 = 𝐹 ∧ 𝑏 = 𝐺) → (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎‘𝑥)𝑅(𝑏‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 17 | df-of 6139 | . . 3 ⊢ ∘𝑓 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎‘𝑥)𝑅(𝑏‘𝑥)))) | |
| 18 | 16, 17 | ovmpoga 6056 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 19 | 2, 4, 9, 18 | syl3anc 1249 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 ↦ cmpt 4095 dom cdm 4664 ‘cfv 5259 (class class class)co 5925 ∘𝑓 cof 6137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 |
| This theorem is referenced by: offres 6201 |
| Copyright terms: Public domain | W3C validator |