ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offval3 GIF version

Theorem offval3 6277
Description: General value of (𝐹𝑓 𝑅𝐺) with no assumptions on functionality of 𝐹 and 𝐺. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offval3 ((𝐹𝑉𝐺𝑊) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝑥,𝑊   𝑥,𝑅

Proof of Theorem offval3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2811 . . 3 (𝐹𝑉𝐹 ∈ V)
21adantr 276 . 2 ((𝐹𝑉𝐺𝑊) → 𝐹 ∈ V)
3 elex 2811 . . 3 (𝐺𝑊𝐺 ∈ V)
43adantl 277 . 2 ((𝐹𝑉𝐺𝑊) → 𝐺 ∈ V)
5 dmexg 4987 . . . 4 (𝐹𝑉 → dom 𝐹 ∈ V)
6 inex1g 4219 . . . 4 (dom 𝐹 ∈ V → (dom 𝐹 ∩ dom 𝐺) ∈ V)
7 mptexg 5863 . . . 4 ((dom 𝐹 ∩ dom 𝐺) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
85, 6, 73syl 17 . . 3 (𝐹𝑉 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
98adantr 276 . 2 ((𝐹𝑉𝐺𝑊) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
10 dmeq 4922 . . . . 5 (𝑎 = 𝐹 → dom 𝑎 = dom 𝐹)
11 dmeq 4922 . . . . 5 (𝑏 = 𝐺 → dom 𝑏 = dom 𝐺)
1210, 11ineqan12d 3407 . . . 4 ((𝑎 = 𝐹𝑏 = 𝐺) → (dom 𝑎 ∩ dom 𝑏) = (dom 𝐹 ∩ dom 𝐺))
13 fveq1 5625 . . . . 5 (𝑎 = 𝐹 → (𝑎𝑥) = (𝐹𝑥))
14 fveq1 5625 . . . . 5 (𝑏 = 𝐺 → (𝑏𝑥) = (𝐺𝑥))
1513, 14oveqan12d 6019 . . . 4 ((𝑎 = 𝐹𝑏 = 𝐺) → ((𝑎𝑥)𝑅(𝑏𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
1612, 15mpteq12dv 4165 . . 3 ((𝑎 = 𝐹𝑏 = 𝐺) → (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎𝑥)𝑅(𝑏𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
17 df-of 6216 . . 3 𝑓 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎𝑥)𝑅(𝑏𝑥))))
1816, 17ovmpoga 6133 . 2 ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
192, 4, 9, 18syl3anc 1271 1 ((𝐹𝑉𝐺𝑊) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  cmpt 4144  dom cdm 4718  cfv 5317  (class class class)co 6000  𝑓 cof 6214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216
This theorem is referenced by:  offres  6278
  Copyright terms: Public domain W3C validator