![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > offval3 | GIF version |
Description: General value of (𝐹 ∘𝑓 𝑅𝐺) with no assumptions on functionality of 𝐹 and 𝐺. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
offval3 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2644 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
2 | 1 | adantr 271 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ V) |
3 | elex 2644 | . . 3 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
4 | 3 | adantl 272 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
5 | dmexg 4729 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
6 | inex1g 3996 | . . . 4 ⊢ (dom 𝐹 ∈ V → (dom 𝐹 ∩ dom 𝐺) ∈ V) | |
7 | mptexg 5561 | . . . 4 ⊢ ((dom 𝐹 ∩ dom 𝐺) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) | |
8 | 5, 6, 7 | 3syl 17 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
9 | 8 | adantr 271 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
10 | dmeq 4667 | . . . . 5 ⊢ (𝑎 = 𝐹 → dom 𝑎 = dom 𝐹) | |
11 | dmeq 4667 | . . . . 5 ⊢ (𝑏 = 𝐺 → dom 𝑏 = dom 𝐺) | |
12 | 10, 11 | ineqan12d 3218 | . . . 4 ⊢ ((𝑎 = 𝐹 ∧ 𝑏 = 𝐺) → (dom 𝑎 ∩ dom 𝑏) = (dom 𝐹 ∩ dom 𝐺)) |
13 | fveq1 5339 | . . . . 5 ⊢ (𝑎 = 𝐹 → (𝑎‘𝑥) = (𝐹‘𝑥)) | |
14 | fveq1 5339 | . . . . 5 ⊢ (𝑏 = 𝐺 → (𝑏‘𝑥) = (𝐺‘𝑥)) | |
15 | 13, 14 | oveqan12d 5709 | . . . 4 ⊢ ((𝑎 = 𝐹 ∧ 𝑏 = 𝐺) → ((𝑎‘𝑥)𝑅(𝑏‘𝑥)) = ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
16 | 12, 15 | mpteq12dv 3942 | . . 3 ⊢ ((𝑎 = 𝐹 ∧ 𝑏 = 𝐺) → (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎‘𝑥)𝑅(𝑏‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
17 | df-of 5894 | . . 3 ⊢ ∘𝑓 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎‘𝑥)𝑅(𝑏‘𝑥)))) | |
18 | 16, 17 | ovmpt2ga 5812 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
19 | 2, 4, 9, 18 | syl3anc 1181 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 Vcvv 2633 ∩ cin 3012 ↦ cmpt 3921 dom cdm 4467 ‘cfv 5049 (class class class)co 5690 ∘𝑓 cof 5892 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-of 5894 |
This theorem is referenced by: offres 5944 |
Copyright terms: Public domain | W3C validator |