ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  offval3 GIF version

Theorem offval3 6188
Description: General value of (𝐹𝑓 𝑅𝐺) with no assumptions on functionality of 𝐹 and 𝐺. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offval3 ((𝐹𝑉𝐺𝑊) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑉   𝑥,𝑊   𝑥,𝑅

Proof of Theorem offval3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . . 3 (𝐹𝑉𝐹 ∈ V)
21adantr 276 . 2 ((𝐹𝑉𝐺𝑊) → 𝐹 ∈ V)
3 elex 2771 . . 3 (𝐺𝑊𝐺 ∈ V)
43adantl 277 . 2 ((𝐹𝑉𝐺𝑊) → 𝐺 ∈ V)
5 dmexg 4927 . . . 4 (𝐹𝑉 → dom 𝐹 ∈ V)
6 inex1g 4166 . . . 4 (dom 𝐹 ∈ V → (dom 𝐹 ∩ dom 𝐺) ∈ V)
7 mptexg 5784 . . . 4 ((dom 𝐹 ∩ dom 𝐺) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
85, 6, 73syl 17 . . 3 (𝐹𝑉 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
98adantr 276 . 2 ((𝐹𝑉𝐺𝑊) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V)
10 dmeq 4863 . . . . 5 (𝑎 = 𝐹 → dom 𝑎 = dom 𝐹)
11 dmeq 4863 . . . . 5 (𝑏 = 𝐺 → dom 𝑏 = dom 𝐺)
1210, 11ineqan12d 3363 . . . 4 ((𝑎 = 𝐹𝑏 = 𝐺) → (dom 𝑎 ∩ dom 𝑏) = (dom 𝐹 ∩ dom 𝐺))
13 fveq1 5554 . . . . 5 (𝑎 = 𝐹 → (𝑎𝑥) = (𝐹𝑥))
14 fveq1 5554 . . . . 5 (𝑏 = 𝐺 → (𝑏𝑥) = (𝐺𝑥))
1513, 14oveqan12d 5938 . . . 4 ((𝑎 = 𝐹𝑏 = 𝐺) → ((𝑎𝑥)𝑅(𝑏𝑥)) = ((𝐹𝑥)𝑅(𝐺𝑥)))
1612, 15mpteq12dv 4112 . . 3 ((𝑎 = 𝐹𝑏 = 𝐺) → (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎𝑥)𝑅(𝑏𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
17 df-of 6132 . . 3 𝑓 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎𝑥)𝑅(𝑏𝑥))))
1816, 17ovmpoga 6049 . 2 ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))) ∈ V) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
192, 4, 9, 18syl3anc 1249 1 ((𝐹𝑉𝐺𝑊) → (𝐹𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥)𝑅(𝐺𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760  cin 3153  cmpt 4091  dom cdm 4660  cfv 5255  (class class class)co 5919  𝑓 cof 6130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132
This theorem is referenced by:  offres  6189
  Copyright terms: Public domain W3C validator