| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > offval3 | GIF version | ||
| Description: General value of (𝐹 ∘𝑓 𝑅𝐺) with no assumptions on functionality of 𝐹 and 𝐺. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| offval3 | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ V) |
| 3 | elex 2811 | . . 3 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
| 4 | 3 | adantl 277 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
| 5 | dmexg 4987 | . . . 4 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
| 6 | inex1g 4219 | . . . 4 ⊢ (dom 𝐹 ∈ V → (dom 𝐹 ∩ dom 𝐺) ∈ V) | |
| 7 | mptexg 5863 | . . . 4 ⊢ ((dom 𝐹 ∩ dom 𝐺) ∈ V → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) | |
| 8 | 5, 6, 7 | 3syl 17 | . . 3 ⊢ (𝐹 ∈ 𝑉 → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
| 9 | 8 | adantr 276 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) |
| 10 | dmeq 4922 | . . . . 5 ⊢ (𝑎 = 𝐹 → dom 𝑎 = dom 𝐹) | |
| 11 | dmeq 4922 | . . . . 5 ⊢ (𝑏 = 𝐺 → dom 𝑏 = dom 𝐺) | |
| 12 | 10, 11 | ineqan12d 3407 | . . . 4 ⊢ ((𝑎 = 𝐹 ∧ 𝑏 = 𝐺) → (dom 𝑎 ∩ dom 𝑏) = (dom 𝐹 ∩ dom 𝐺)) |
| 13 | fveq1 5625 | . . . . 5 ⊢ (𝑎 = 𝐹 → (𝑎‘𝑥) = (𝐹‘𝑥)) | |
| 14 | fveq1 5625 | . . . . 5 ⊢ (𝑏 = 𝐺 → (𝑏‘𝑥) = (𝐺‘𝑥)) | |
| 15 | 13, 14 | oveqan12d 6019 | . . . 4 ⊢ ((𝑎 = 𝐹 ∧ 𝑏 = 𝐺) → ((𝑎‘𝑥)𝑅(𝑏‘𝑥)) = ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
| 16 | 12, 15 | mpteq12dv 4165 | . . 3 ⊢ ((𝑎 = 𝐹 ∧ 𝑏 = 𝐺) → (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎‘𝑥)𝑅(𝑏‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 17 | df-of 6216 | . . 3 ⊢ ∘𝑓 𝑅 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑥 ∈ (dom 𝑎 ∩ dom 𝑏) ↦ ((𝑎‘𝑥)𝑅(𝑏‘𝑥)))) | |
| 18 | 16, 17 | ovmpoga 6133 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V ∧ (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥))) ∈ V) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| 19 | 2, 4, 9, 18 | syl3anc 1271 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘𝑓 𝑅𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥)𝑅(𝐺‘𝑥)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 ↦ cmpt 4144 dom cdm 4718 ‘cfv 5317 (class class class)co 6000 ∘𝑓 cof 6214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-of 6216 |
| This theorem is referenced by: offres 6278 |
| Copyright terms: Public domain | W3C validator |