Step | Hyp | Ref
| Expression |
1 | | elex 2763 |
. . . 4
⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) |
2 | 1 | adantr 276 |
. . 3
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → 𝑊 ∈ V) |
3 | | df-sra 13748 |
. . . 4
⊢
subringAlg = (𝑤
∈ V ↦ (𝑠 ∈
𝒫 (Base‘𝑤)
↦ (((𝑤 sSet
〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑤)〉))) |
4 | | fveq2 5534 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
5 | 4 | pweqd 3595 |
. . . . 5
⊢ (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝑊)) |
6 | | id 19 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) |
7 | | oveq1 5902 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (𝑤 ↾s 𝑠) = (𝑊 ↾s 𝑠)) |
8 | 7 | opeq2d 3800 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → 〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉 =
〈(Scalar‘ndx), (𝑊 ↾s 𝑠)〉) |
9 | 6, 8 | oveq12d 5913 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (𝑤 sSet 〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉) = (𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑠)〉)) |
10 | | fveq2 5534 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (.r‘𝑤) = (.r‘𝑊)) |
11 | 10 | opeq2d 3800 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉 = 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) |
12 | 9, 11 | oveq12d 5913 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ((𝑤 sSet 〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉) = ((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉)) |
13 | 10 | opeq2d 3800 |
. . . . . 6
⊢ (𝑤 = 𝑊 →
〈(·𝑖‘ndx),
(.r‘𝑤)〉 =
〈(·𝑖‘ndx),
(.r‘𝑊)〉) |
14 | 12, 13 | oveq12d 5913 |
. . . . 5
⊢ (𝑤 = 𝑊 → (((𝑤 sSet 〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑤)〉) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) |
15 | 5, 14 | mpteq12dv 4100 |
. . . 4
⊢ (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet 〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑤)〉)) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉))) |
16 | | elex 2763 |
. . . 4
⊢ (𝑊 ∈ V → 𝑊 ∈ V) |
17 | | basfn 12569 |
. . . . . . 7
⊢ Base Fn
V |
18 | | funfvex 5551 |
. . . . . . . 8
⊢ ((Fun
Base ∧ 𝑊 ∈ dom
Base) → (Base‘𝑊)
∈ V) |
19 | 18 | funfni 5335 |
. . . . . . 7
⊢ ((Base Fn
V ∧ 𝑊 ∈ V) →
(Base‘𝑊) ∈
V) |
20 | 17, 19 | mpan 424 |
. . . . . 6
⊢ (𝑊 ∈ V →
(Base‘𝑊) ∈
V) |
21 | 20 | pwexd 4199 |
. . . . 5
⊢ (𝑊 ∈ V → 𝒫
(Base‘𝑊) ∈
V) |
22 | 21 | mptexd 5763 |
. . . 4
⊢ (𝑊 ∈ V → (𝑠 ∈ 𝒫
(Base‘𝑊) ↦
(((𝑊 sSet
〈(Scalar‘ndx), (𝑊 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) ∈ V) |
23 | 3, 15, 16, 22 | fvmptd3 5629 |
. . 3
⊢ (𝑊 ∈ V → (subringAlg
‘𝑊) = (𝑠 ∈ 𝒫
(Base‘𝑊) ↦
(((𝑊 sSet
〈(Scalar‘ndx), (𝑊 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉))) |
24 | 2, 23 | syl 14 |
. 2
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → (subringAlg ‘𝑊) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉))) |
25 | | simpr 110 |
. . . . . . 7
⊢ (((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) |
26 | 25 | oveq2d 5911 |
. . . . . 6
⊢ (((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (𝑊 ↾s 𝑠) = (𝑊 ↾s 𝑆)) |
27 | 26 | opeq2d 3800 |
. . . . 5
⊢ (((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → 〈(Scalar‘ndx), (𝑊 ↾s 𝑠)〉 =
〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) |
28 | 27 | oveq2d 5911 |
. . . 4
⊢ (((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑠)〉) = (𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉)) |
29 | 28 | oveq1d 5910 |
. . 3
⊢ (((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → ((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) = ((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉)) |
30 | 29 | oveq1d 5910 |
. 2
⊢ (((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) |
31 | | simpr 110 |
. . 3
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → 𝑆 ⊆ (Base‘𝑊)) |
32 | | elpw2g 4174 |
. . . 4
⊢
((Base‘𝑊)
∈ V → (𝑆 ∈
𝒫 (Base‘𝑊)
↔ 𝑆 ⊆
(Base‘𝑊))) |
33 | 2, 20, 32 | 3syl 17 |
. . 3
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → (𝑆 ∈ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊))) |
34 | 31, 33 | mpbird 167 |
. 2
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → 𝑆 ∈ 𝒫 (Base‘𝑊)) |
35 | | simpl 109 |
. . . . 5
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → 𝑊 ∈ 𝑉) |
36 | | scaslid 12661 |
. . . . . . 7
⊢ (Scalar =
Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈
ℕ) |
37 | 36 | simpri 113 |
. . . . . 6
⊢
(Scalar‘ndx) ∈ ℕ |
38 | 37 | a1i 9 |
. . . . 5
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → (Scalar‘ndx) ∈
ℕ) |
39 | 34 | elexd 2765 |
. . . . . 6
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → 𝑆 ∈ V) |
40 | | ressex 12574 |
. . . . . 6
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ∈ V) → (𝑊 ↾s 𝑆) ∈ V) |
41 | 39, 40 | syldan 282 |
. . . . 5
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → (𝑊 ↾s 𝑆) ∈ V) |
42 | | setsex 12543 |
. . . . 5
⊢ ((𝑊 ∈ 𝑉 ∧ (Scalar‘ndx) ∈ ℕ
∧ (𝑊
↾s 𝑆)
∈ V) → (𝑊 sSet
〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) ∈ V) |
43 | 35, 38, 41, 42 | syl3anc 1249 |
. . . 4
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → (𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) ∈
V) |
44 | | vscaslid 12671 |
. . . . . 6
⊢ (
·𝑠 = Slot (
·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
45 | 44 | simpri 113 |
. . . . 5
⊢ (
·𝑠 ‘ndx) ∈ ℕ |
46 | 45 | a1i 9 |
. . . 4
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → (
·𝑠 ‘ndx) ∈
ℕ) |
47 | | mulrslid 12640 |
. . . . . 6
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
48 | 47 | slotex 12538 |
. . . . 5
⊢ (𝑊 ∈ 𝑉 → (.r‘𝑊) ∈ V) |
49 | 48 | adantr 276 |
. . . 4
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → (.r‘𝑊) ∈ V) |
50 | | setsex 12543 |
. . . 4
⊢ (((𝑊 sSet 〈(Scalar‘ndx),
(𝑊 ↾s
𝑆)〉) ∈ V ∧ (
·𝑠 ‘ndx) ∈ ℕ ∧
(.r‘𝑊)
∈ V) → ((𝑊 sSet
〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) ∈
V) |
51 | 43, 46, 49, 50 | syl3anc 1249 |
. . 3
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → ((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) ∈
V) |
52 | | ipslid 12679 |
. . . . 5
⊢
(·𝑖 = Slot
(·𝑖‘ndx) ∧
(·𝑖‘ndx) ∈
ℕ) |
53 | 52 | simpri 113 |
. . . 4
⊢
(·𝑖‘ndx) ∈
ℕ |
54 | 53 | a1i 9 |
. . 3
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) →
(·𝑖‘ndx) ∈
ℕ) |
55 | | setsex 12543 |
. . 3
⊢ ((((𝑊 sSet 〈(Scalar‘ndx),
(𝑊 ↾s
𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) ∈ V ∧
(·𝑖‘ndx) ∈ ℕ ∧
(.r‘𝑊)
∈ V) → (((𝑊 sSet
〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉) ∈ V) |
56 | 51, 54, 49, 55 | syl3anc 1249 |
. 2
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉) ∈ V) |
57 | 24, 30, 34, 56 | fvmptd 5617 |
1
⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑊)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑊)〉)) |