Step | Hyp | Ref
| Expression |
1 | | elex 2750 |
. . . 4
β’ (π β π β π β V) |
2 | 1 | adantr 276 |
. . 3
β’ ((π β π β§ π β (Baseβπ)) β π β V) |
3 | | df-sra 13533 |
. . . 4
β’
subringAlg = (π€
β V β¦ (π β
π« (Baseβπ€)
β¦ (((π€ sSet
β¨(Scalarβndx), (π€ βΎs π )β©) sSet β¨(
Β·π βndx), (.rβπ€)β©) sSet
β¨(Β·πβndx),
(.rβπ€)β©))) |
4 | | fveq2 5517 |
. . . . . 6
β’ (π€ = π β (Baseβπ€) = (Baseβπ)) |
5 | 4 | pweqd 3582 |
. . . . 5
β’ (π€ = π β π« (Baseβπ€) = π« (Baseβπ)) |
6 | | id 19 |
. . . . . . . 8
β’ (π€ = π β π€ = π) |
7 | | oveq1 5885 |
. . . . . . . . 9
β’ (π€ = π β (π€ βΎs π ) = (π βΎs π )) |
8 | 7 | opeq2d 3787 |
. . . . . . . 8
β’ (π€ = π β β¨(Scalarβndx), (π€ βΎs π )β© =
β¨(Scalarβndx), (π βΎs π )β©) |
9 | 6, 8 | oveq12d 5896 |
. . . . . . 7
β’ (π€ = π β (π€ sSet β¨(Scalarβndx), (π€ βΎs π )β©) = (π sSet β¨(Scalarβndx), (π βΎs π )β©)) |
10 | | fveq2 5517 |
. . . . . . . 8
β’ (π€ = π β (.rβπ€) = (.rβπ)) |
11 | 10 | opeq2d 3787 |
. . . . . . 7
β’ (π€ = π β β¨(
Β·π βndx), (.rβπ€)β© = β¨(
Β·π βndx), (.rβπ)β©) |
12 | 9, 11 | oveq12d 5896 |
. . . . . 6
β’ (π€ = π β ((π€ sSet β¨(Scalarβndx), (π€ βΎs π )β©) sSet β¨(
Β·π βndx), (.rβπ€)β©) = ((π sSet β¨(Scalarβndx), (π βΎs π )β©) sSet β¨(
Β·π βndx), (.rβπ)β©)) |
13 | 10 | opeq2d 3787 |
. . . . . 6
β’ (π€ = π β
β¨(Β·πβndx),
(.rβπ€)β© =
β¨(Β·πβndx),
(.rβπ)β©) |
14 | 12, 13 | oveq12d 5896 |
. . . . 5
β’ (π€ = π β (((π€ sSet β¨(Scalarβndx), (π€ βΎs π )β©) sSet β¨(
Β·π βndx), (.rβπ€)β©) sSet
β¨(Β·πβndx),
(.rβπ€)β©) = (((π sSet β¨(Scalarβndx), (π βΎs π )β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
15 | 5, 14 | mpteq12dv 4087 |
. . . 4
β’ (π€ = π β (π β π« (Baseβπ€) β¦ (((π€ sSet β¨(Scalarβndx), (π€ βΎs π )β©) sSet β¨(
Β·π βndx), (.rβπ€)β©) sSet
β¨(Β·πβndx),
(.rβπ€)β©)) = (π β π« (Baseβπ) β¦ (((π sSet β¨(Scalarβndx), (π βΎs π )β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©))) |
16 | | elex 2750 |
. . . 4
β’ (π β V β π β V) |
17 | | basfn 12523 |
. . . . . . 7
β’ Base Fn
V |
18 | | funfvex 5534 |
. . . . . . . 8
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
19 | 18 | funfni 5318 |
. . . . . . 7
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
20 | 17, 19 | mpan 424 |
. . . . . 6
β’ (π β V β
(Baseβπ) β
V) |
21 | 20 | pwexd 4183 |
. . . . 5
β’ (π β V β π«
(Baseβπ) β
V) |
22 | 21 | mptexd 5746 |
. . . 4
β’ (π β V β (π β π«
(Baseβπ) β¦
(((π sSet
β¨(Scalarβndx), (π βΎs π )β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) β V) |
23 | 3, 15, 16, 22 | fvmptd3 5612 |
. . 3
β’ (π β V β (subringAlg
βπ) = (π β π«
(Baseβπ) β¦
(((π sSet
β¨(Scalarβndx), (π βΎs π )β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©))) |
24 | 2, 23 | syl 14 |
. 2
β’ ((π β π β§ π β (Baseβπ)) β (subringAlg βπ) = (π β π« (Baseβπ) β¦ (((π sSet β¨(Scalarβndx), (π βΎs π )β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©))) |
25 | | simpr 110 |
. . . . . . 7
β’ (((π β π β§ π β (Baseβπ)) β§ π = π) β π = π) |
26 | 25 | oveq2d 5894 |
. . . . . 6
β’ (((π β π β§ π β (Baseβπ)) β§ π = π) β (π βΎs π ) = (π βΎs π)) |
27 | 26 | opeq2d 3787 |
. . . . 5
β’ (((π β π β§ π β (Baseβπ)) β§ π = π) β β¨(Scalarβndx), (π βΎs π )β© =
β¨(Scalarβndx), (π βΎs π)β©) |
28 | 27 | oveq2d 5894 |
. . . 4
β’ (((π β π β§ π β (Baseβπ)) β§ π = π) β (π sSet β¨(Scalarβndx), (π βΎs π )β©) = (π sSet β¨(Scalarβndx), (π βΎs π)β©)) |
29 | 28 | oveq1d 5893 |
. . 3
β’ (((π β π β§ π β (Baseβπ)) β§ π = π) β ((π sSet β¨(Scalarβndx), (π βΎs π )β©) sSet β¨(
Β·π βndx), (.rβπ)β©) = ((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©)) |
30 | 29 | oveq1d 5893 |
. 2
β’ (((π β π β§ π β (Baseβπ)) β§ π = π) β (((π sSet β¨(Scalarβndx), (π βΎs π )β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©) = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |
31 | | simpr 110 |
. . 3
β’ ((π β π β§ π β (Baseβπ)) β π β (Baseβπ)) |
32 | | elpw2g 4158 |
. . . 4
β’
((Baseβπ)
β V β (π β
π« (Baseβπ)
β π β
(Baseβπ))) |
33 | 2, 20, 32 | 3syl 17 |
. . 3
β’ ((π β π β§ π β (Baseβπ)) β (π β π« (Baseβπ) β π β (Baseβπ))) |
34 | 31, 33 | mpbird 167 |
. 2
β’ ((π β π β§ π β (Baseβπ)) β π β π« (Baseβπ)) |
35 | | simpl 109 |
. . . . 5
β’ ((π β π β§ π β (Baseβπ)) β π β π) |
36 | | scaslid 12614 |
. . . . . . 7
β’ (Scalar =
Slot (Scalarβndx) β§ (Scalarβndx) β
β) |
37 | 36 | simpri 113 |
. . . . . 6
β’
(Scalarβndx) β β |
38 | 37 | a1i 9 |
. . . . 5
β’ ((π β π β§ π β (Baseβπ)) β (Scalarβndx) β
β) |
39 | 34 | elexd 2752 |
. . . . . 6
β’ ((π β π β§ π β (Baseβπ)) β π β V) |
40 | | ressex 12528 |
. . . . . 6
β’ ((π β π β§ π β V) β (π βΎs π) β V) |
41 | 39, 40 | syldan 282 |
. . . . 5
β’ ((π β π β§ π β (Baseβπ)) β (π βΎs π) β V) |
42 | | setsex 12497 |
. . . . 5
β’ ((π β π β§ (Scalarβndx) β β
β§ (π
βΎs π)
β V) β (π sSet
β¨(Scalarβndx), (π βΎs π)β©) β V) |
43 | 35, 38, 41, 42 | syl3anc 1238 |
. . . 4
β’ ((π β π β§ π β (Baseβπ)) β (π sSet β¨(Scalarβndx), (π βΎs π)β©) β
V) |
44 | | vscaslid 12624 |
. . . . . 6
β’ (
Β·π = Slot (
Β·π βndx) β§ (
Β·π βndx) β
β) |
45 | 44 | simpri 113 |
. . . . 5
β’ (
Β·π βndx) β β |
46 | 45 | a1i 9 |
. . . 4
β’ ((π β π β§ π β (Baseβπ)) β (
Β·π βndx) β
β) |
47 | | mulrslid 12593 |
. . . . . 6
β’
(.r = Slot (.rβndx) β§
(.rβndx) β β) |
48 | 47 | slotex 12492 |
. . . . 5
β’ (π β π β (.rβπ) β V) |
49 | 48 | adantr 276 |
. . . 4
β’ ((π β π β§ π β (Baseβπ)) β (.rβπ) β V) |
50 | | setsex 12497 |
. . . 4
β’ (((π sSet β¨(Scalarβndx),
(π βΎs
π)β©) β V β§ (
Β·π βndx) β β β§
(.rβπ)
β V) β ((π sSet
β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) β
V) |
51 | 43, 46, 49, 50 | syl3anc 1238 |
. . 3
β’ ((π β π β§ π β (Baseβπ)) β ((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) β
V) |
52 | | ipslid 12632 |
. . . . 5
β’
(Β·π = Slot
(Β·πβndx) β§
(Β·πβndx) β
β) |
53 | 52 | simpri 113 |
. . . 4
β’
(Β·πβndx) β
β |
54 | 53 | a1i 9 |
. . 3
β’ ((π β π β§ π β (Baseβπ)) β
(Β·πβndx) β
β) |
55 | | setsex 12497 |
. . 3
β’ ((((π sSet β¨(Scalarβndx),
(π βΎs
π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) β V β§
(Β·πβndx) β β β§
(.rβπ)
β V) β (((π sSet
β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©) β V) |
56 | 51, 54, 49, 55 | syl3anc 1238 |
. 2
β’ ((π β π β§ π β (Baseβπ)) β (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©) β V) |
57 | 24, 30, 34, 56 | fvmptd 5600 |
1
β’ ((π β π β§ π β (Baseβπ)) β ((subringAlg βπ)βπ) = (((π sSet β¨(Scalarβndx), (π βΎs π)β©) sSet β¨(
Β·π βndx), (.rβπ)β©) sSet
β¨(Β·πβndx),
(.rβπ)β©)) |