ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraval GIF version

Theorem sraval 14243
Description: Lemma for srabaseg 14245 through sravscag 14249. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
sraval ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))

Proof of Theorem sraval
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2784 . . . 4 (𝑊𝑉𝑊 ∈ V)
21adantr 276 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑊 ∈ V)
3 df-sra 14241 . . . 4 subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩)))
4 fveq2 5583 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
54pweqd 3622 . . . . 5 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝑊))
6 id 19 . . . . . . . 8 (𝑤 = 𝑊𝑤 = 𝑊)
7 oveq1 5958 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤s 𝑠) = (𝑊s 𝑠))
87opeq2d 3828 . . . . . . . 8 (𝑤 = 𝑊 → ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩ = ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩)
96, 8oveq12d 5969 . . . . . . 7 (𝑤 = 𝑊 → (𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) = (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩))
10 fveq2 5583 . . . . . . . 8 (𝑤 = 𝑊 → (.r𝑤) = (.r𝑊))
1110opeq2d 3828 . . . . . . 7 (𝑤 = 𝑊 → ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩ = ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)
129, 11oveq12d 5969 . . . . . 6 (𝑤 = 𝑊 → ((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) = ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
1310opeq2d 3828 . . . . . 6 (𝑤 = 𝑊 → ⟨(·𝑖‘ndx), (.r𝑤)⟩ = ⟨(·𝑖‘ndx), (.r𝑊)⟩)
1412, 13oveq12d 5969 . . . . 5 (𝑤 = 𝑊 → (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
155, 14mpteq12dv 4130 . . . 4 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩)) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
16 elex 2784 . . . 4 (𝑊 ∈ V → 𝑊 ∈ V)
17 basfn 12934 . . . . . . 7 Base Fn V
18 funfvex 5600 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
1918funfni 5381 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
2017, 19mpan 424 . . . . . 6 (𝑊 ∈ V → (Base‘𝑊) ∈ V)
2120pwexd 4229 . . . . 5 (𝑊 ∈ V → 𝒫 (Base‘𝑊) ∈ V)
2221mptexd 5818 . . . 4 (𝑊 ∈ V → (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)) ∈ V)
233, 15, 16, 22fvmptd3 5680 . . 3 (𝑊 ∈ V → (subringAlg ‘𝑊) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
242, 23syl 14 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (subringAlg ‘𝑊) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
25 simpr 110 . . . . . . 7 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
2625oveq2d 5967 . . . . . 6 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (𝑊s 𝑠) = (𝑊s 𝑆))
2726opeq2d 3828 . . . . 5 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩ = ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)
2827oveq2d 5967 . . . 4 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) = (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩))
2928oveq1d 5966 . . 3 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) = ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
3029oveq1d 5966 . 2 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
31 simpr 110 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑆 ⊆ (Base‘𝑊))
32 elpw2g 4204 . . . 4 ((Base‘𝑊) ∈ V → (𝑆 ∈ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊)))
332, 20, 323syl 17 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (𝑆 ∈ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊)))
3431, 33mpbird 167 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑆 ∈ 𝒫 (Base‘𝑊))
35 simpl 109 . . . . 5 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑊𝑉)
36 scaslid 13029 . . . . . . 7 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
3736simpri 113 . . . . . 6 (Scalar‘ndx) ∈ ℕ
3837a1i 9 . . . . 5 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (Scalar‘ndx) ∈ ℕ)
3934elexd 2786 . . . . . 6 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑆 ∈ V)
40 ressex 12941 . . . . . 6 ((𝑊𝑉𝑆 ∈ V) → (𝑊s 𝑆) ∈ V)
4139, 40syldan 282 . . . . 5 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (𝑊s 𝑆) ∈ V)
42 setsex 12908 . . . . 5 ((𝑊𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ (𝑊s 𝑆) ∈ V) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
4335, 38, 41, 42syl3anc 1250 . . . 4 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
44 vscaslid 13039 . . . . . 6 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
4544simpri 113 . . . . 5 ( ·𝑠 ‘ndx) ∈ ℕ
4645a1i 9 . . . 4 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ( ·𝑠 ‘ndx) ∈ ℕ)
47 mulrslid 13008 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
4847slotex 12903 . . . . 5 (𝑊𝑉 → (.r𝑊) ∈ V)
4948adantr 276 . . . 4 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (.r𝑊) ∈ V)
50 setsex 12908 . . . 4 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
5143, 46, 49, 50syl3anc 1250 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
52 ipslid 13047 . . . . 5 (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
5352simpri 113 . . . 4 (·𝑖‘ndx) ∈ ℕ
5453a1i 9 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (·𝑖‘ndx) ∈ ℕ)
55 setsex 12908 . . 3 ((((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V ∧ (·𝑖‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) ∈ V)
5651, 54, 49, 55syl3anc 1250 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) ∈ V)
5724, 30, 34, 56fvmptd 5667 1 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  wss 3167  𝒫 cpw 3617  cop 3637  cmpt 4109   Fn wfn 5271  cfv 5276  (class class class)co 5951  cn 9043  ndxcnx 12873   sSet csts 12874  Slot cslot 12875  Basecbs 12876  s cress 12877  .rcmulr 12954  Scalarcsca 12956   ·𝑠 cvsca 12957  ·𝑖cip 12958  subringAlg csra 14239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-mulr 12967  df-sca 12969  df-vsca 12970  df-ip 12971  df-sra 14241
This theorem is referenced by:  sralemg  14244  srascag  14248  sravscag  14249  sraipg  14250  sraex  14252
  Copyright terms: Public domain W3C validator