ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraval GIF version

Theorem sraval 13993
Description: Lemma for srabaseg 13995 through sravscag 13999. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
sraval ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))

Proof of Theorem sraval
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2774 . . . 4 (𝑊𝑉𝑊 ∈ V)
21adantr 276 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑊 ∈ V)
3 df-sra 13991 . . . 4 subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩)))
4 fveq2 5558 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
54pweqd 3610 . . . . 5 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝑊))
6 id 19 . . . . . . . 8 (𝑤 = 𝑊𝑤 = 𝑊)
7 oveq1 5929 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤s 𝑠) = (𝑊s 𝑠))
87opeq2d 3815 . . . . . . . 8 (𝑤 = 𝑊 → ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩ = ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩)
96, 8oveq12d 5940 . . . . . . 7 (𝑤 = 𝑊 → (𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) = (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩))
10 fveq2 5558 . . . . . . . 8 (𝑤 = 𝑊 → (.r𝑤) = (.r𝑊))
1110opeq2d 3815 . . . . . . 7 (𝑤 = 𝑊 → ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩ = ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)
129, 11oveq12d 5940 . . . . . 6 (𝑤 = 𝑊 → ((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) = ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
1310opeq2d 3815 . . . . . 6 (𝑤 = 𝑊 → ⟨(·𝑖‘ndx), (.r𝑤)⟩ = ⟨(·𝑖‘ndx), (.r𝑊)⟩)
1412, 13oveq12d 5940 . . . . 5 (𝑤 = 𝑊 → (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
155, 14mpteq12dv 4115 . . . 4 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩)) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
16 elex 2774 . . . 4 (𝑊 ∈ V → 𝑊 ∈ V)
17 basfn 12736 . . . . . . 7 Base Fn V
18 funfvex 5575 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
1918funfni 5358 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
2017, 19mpan 424 . . . . . 6 (𝑊 ∈ V → (Base‘𝑊) ∈ V)
2120pwexd 4214 . . . . 5 (𝑊 ∈ V → 𝒫 (Base‘𝑊) ∈ V)
2221mptexd 5789 . . . 4 (𝑊 ∈ V → (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)) ∈ V)
233, 15, 16, 22fvmptd3 5655 . . 3 (𝑊 ∈ V → (subringAlg ‘𝑊) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
242, 23syl 14 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (subringAlg ‘𝑊) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
25 simpr 110 . . . . . . 7 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
2625oveq2d 5938 . . . . . 6 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (𝑊s 𝑠) = (𝑊s 𝑆))
2726opeq2d 3815 . . . . 5 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩ = ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)
2827oveq2d 5938 . . . 4 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) = (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩))
2928oveq1d 5937 . . 3 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) = ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
3029oveq1d 5937 . 2 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
31 simpr 110 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑆 ⊆ (Base‘𝑊))
32 elpw2g 4189 . . . 4 ((Base‘𝑊) ∈ V → (𝑆 ∈ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊)))
332, 20, 323syl 17 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (𝑆 ∈ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊)))
3431, 33mpbird 167 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑆 ∈ 𝒫 (Base‘𝑊))
35 simpl 109 . . . . 5 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑊𝑉)
36 scaslid 12830 . . . . . . 7 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
3736simpri 113 . . . . . 6 (Scalar‘ndx) ∈ ℕ
3837a1i 9 . . . . 5 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (Scalar‘ndx) ∈ ℕ)
3934elexd 2776 . . . . . 6 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑆 ∈ V)
40 ressex 12743 . . . . . 6 ((𝑊𝑉𝑆 ∈ V) → (𝑊s 𝑆) ∈ V)
4139, 40syldan 282 . . . . 5 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (𝑊s 𝑆) ∈ V)
42 setsex 12710 . . . . 5 ((𝑊𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ (𝑊s 𝑆) ∈ V) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
4335, 38, 41, 42syl3anc 1249 . . . 4 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
44 vscaslid 12840 . . . . . 6 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
4544simpri 113 . . . . 5 ( ·𝑠 ‘ndx) ∈ ℕ
4645a1i 9 . . . 4 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ( ·𝑠 ‘ndx) ∈ ℕ)
47 mulrslid 12809 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
4847slotex 12705 . . . . 5 (𝑊𝑉 → (.r𝑊) ∈ V)
4948adantr 276 . . . 4 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (.r𝑊) ∈ V)
50 setsex 12710 . . . 4 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
5143, 46, 49, 50syl3anc 1249 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
52 ipslid 12848 . . . . 5 (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
5352simpri 113 . . . 4 (·𝑖‘ndx) ∈ ℕ
5453a1i 9 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (·𝑖‘ndx) ∈ ℕ)
55 setsex 12710 . . 3 ((((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V ∧ (·𝑖‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) ∈ V)
5651, 54, 49, 55syl3anc 1249 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) ∈ V)
5724, 30, 34, 56fvmptd 5642 1 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  𝒫 cpw 3605  cop 3625  cmpt 4094   Fn wfn 5253  cfv 5258  (class class class)co 5922  cn 8990  ndxcnx 12675   sSet csts 12676  Slot cslot 12677  Basecbs 12678  s cress 12679  .rcmulr 12756  Scalarcsca 12758   ·𝑠 cvsca 12759  ·𝑖cip 12760  subringAlg csra 13989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-mulr 12769  df-sca 12771  df-vsca 12772  df-ip 12773  df-sra 13991
This theorem is referenced by:  sralemg  13994  srascag  13998  sravscag  13999  sraipg  14000  sraex  14002
  Copyright terms: Public domain W3C validator