ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraval GIF version

Theorem sraval 14386
Description: Lemma for srabaseg 14388 through sravscag 14392. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
sraval ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))

Proof of Theorem sraval
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2811 . . . 4 (𝑊𝑉𝑊 ∈ V)
21adantr 276 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑊 ∈ V)
3 df-sra 14384 . . . 4 subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩)))
4 fveq2 5623 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
54pweqd 3654 . . . . 5 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝑊))
6 id 19 . . . . . . . 8 (𝑤 = 𝑊𝑤 = 𝑊)
7 oveq1 6001 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤s 𝑠) = (𝑊s 𝑠))
87opeq2d 3863 . . . . . . . 8 (𝑤 = 𝑊 → ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩ = ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩)
96, 8oveq12d 6012 . . . . . . 7 (𝑤 = 𝑊 → (𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) = (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩))
10 fveq2 5623 . . . . . . . 8 (𝑤 = 𝑊 → (.r𝑤) = (.r𝑊))
1110opeq2d 3863 . . . . . . 7 (𝑤 = 𝑊 → ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩ = ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)
129, 11oveq12d 6012 . . . . . 6 (𝑤 = 𝑊 → ((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) = ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
1310opeq2d 3863 . . . . . 6 (𝑤 = 𝑊 → ⟨(·𝑖‘ndx), (.r𝑤)⟩ = ⟨(·𝑖‘ndx), (.r𝑊)⟩)
1412, 13oveq12d 6012 . . . . 5 (𝑤 = 𝑊 → (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
155, 14mpteq12dv 4165 . . . 4 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩)) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
16 elex 2811 . . . 4 (𝑊 ∈ V → 𝑊 ∈ V)
17 basfn 13077 . . . . . . 7 Base Fn V
18 funfvex 5640 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
1918funfni 5419 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
2017, 19mpan 424 . . . . . 6 (𝑊 ∈ V → (Base‘𝑊) ∈ V)
2120pwexd 4264 . . . . 5 (𝑊 ∈ V → 𝒫 (Base‘𝑊) ∈ V)
2221mptexd 5859 . . . 4 (𝑊 ∈ V → (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)) ∈ V)
233, 15, 16, 22fvmptd3 5721 . . 3 (𝑊 ∈ V → (subringAlg ‘𝑊) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
242, 23syl 14 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (subringAlg ‘𝑊) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
25 simpr 110 . . . . . . 7 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
2625oveq2d 6010 . . . . . 6 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (𝑊s 𝑠) = (𝑊s 𝑆))
2726opeq2d 3863 . . . . 5 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩ = ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)
2827oveq2d 6010 . . . 4 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) = (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩))
2928oveq1d 6009 . . 3 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) = ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
3029oveq1d 6009 . 2 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
31 simpr 110 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑆 ⊆ (Base‘𝑊))
32 elpw2g 4239 . . . 4 ((Base‘𝑊) ∈ V → (𝑆 ∈ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊)))
332, 20, 323syl 17 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (𝑆 ∈ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊)))
3431, 33mpbird 167 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑆 ∈ 𝒫 (Base‘𝑊))
35 simpl 109 . . . . 5 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑊𝑉)
36 scaslid 13172 . . . . . . 7 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
3736simpri 113 . . . . . 6 (Scalar‘ndx) ∈ ℕ
3837a1i 9 . . . . 5 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (Scalar‘ndx) ∈ ℕ)
3934elexd 2813 . . . . . 6 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑆 ∈ V)
40 ressex 13084 . . . . . 6 ((𝑊𝑉𝑆 ∈ V) → (𝑊s 𝑆) ∈ V)
4139, 40syldan 282 . . . . 5 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (𝑊s 𝑆) ∈ V)
42 setsex 13050 . . . . 5 ((𝑊𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ (𝑊s 𝑆) ∈ V) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
4335, 38, 41, 42syl3anc 1271 . . . 4 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
44 vscaslid 13182 . . . . . 6 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
4544simpri 113 . . . . 5 ( ·𝑠 ‘ndx) ∈ ℕ
4645a1i 9 . . . 4 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ( ·𝑠 ‘ndx) ∈ ℕ)
47 mulrslid 13151 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
4847slotex 13045 . . . . 5 (𝑊𝑉 → (.r𝑊) ∈ V)
4948adantr 276 . . . 4 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (.r𝑊) ∈ V)
50 setsex 13050 . . . 4 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
5143, 46, 49, 50syl3anc 1271 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
52 ipslid 13190 . . . . 5 (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
5352simpri 113 . . . 4 (·𝑖‘ndx) ∈ ℕ
5453a1i 9 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (·𝑖‘ndx) ∈ ℕ)
55 setsex 13050 . . 3 ((((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V ∧ (·𝑖‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) ∈ V)
5651, 54, 49, 55syl3anc 1271 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) ∈ V)
5724, 30, 34, 56fvmptd 5708 1 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  𝒫 cpw 3649  cop 3669  cmpt 4144   Fn wfn 5309  cfv 5314  (class class class)co 5994  cn 9098  ndxcnx 13015   sSet csts 13016  Slot cslot 13017  Basecbs 13018  s cress 13019  .rcmulr 13097  Scalarcsca 13099   ·𝑠 cvsca 13100  ·𝑖cip 13101  subringAlg csra 14382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-mulr 13110  df-sca 13112  df-vsca 13113  df-ip 13114  df-sra 14384
This theorem is referenced by:  sralemg  14387  srascag  14391  sravscag  14392  sraipg  14393  sraex  14395
  Copyright terms: Public domain W3C validator