ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sraval GIF version

Theorem sraval 13936
Description: Lemma for srabaseg 13938 through sravscag 13942. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
sraval ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))

Proof of Theorem sraval
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . . . 4 (𝑊𝑉𝑊 ∈ V)
21adantr 276 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑊 ∈ V)
3 df-sra 13934 . . . 4 subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩)))
4 fveq2 5555 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
54pweqd 3607 . . . . 5 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝑊))
6 id 19 . . . . . . . 8 (𝑤 = 𝑊𝑤 = 𝑊)
7 oveq1 5926 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑤s 𝑠) = (𝑊s 𝑠))
87opeq2d 3812 . . . . . . . 8 (𝑤 = 𝑊 → ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩ = ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩)
96, 8oveq12d 5937 . . . . . . 7 (𝑤 = 𝑊 → (𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) = (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩))
10 fveq2 5555 . . . . . . . 8 (𝑤 = 𝑊 → (.r𝑤) = (.r𝑊))
1110opeq2d 3812 . . . . . . 7 (𝑤 = 𝑊 → ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩ = ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩)
129, 11oveq12d 5937 . . . . . 6 (𝑤 = 𝑊 → ((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) = ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
1310opeq2d 3812 . . . . . 6 (𝑤 = 𝑊 → ⟨(·𝑖‘ndx), (.r𝑤)⟩ = ⟨(·𝑖‘ndx), (.r𝑊)⟩)
1412, 13oveq12d 5937 . . . . 5 (𝑤 = 𝑊 → (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
155, 14mpteq12dv 4112 . . . 4 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩)) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
16 elex 2771 . . . 4 (𝑊 ∈ V → 𝑊 ∈ V)
17 basfn 12679 . . . . . . 7 Base Fn V
18 funfvex 5572 . . . . . . . 8 ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V)
1918funfni 5355 . . . . . . 7 ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V)
2017, 19mpan 424 . . . . . 6 (𝑊 ∈ V → (Base‘𝑊) ∈ V)
2120pwexd 4211 . . . . 5 (𝑊 ∈ V → 𝒫 (Base‘𝑊) ∈ V)
2221mptexd 5786 . . . 4 (𝑊 ∈ V → (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)) ∈ V)
233, 15, 16, 22fvmptd3 5652 . . 3 (𝑊 ∈ V → (subringAlg ‘𝑊) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
242, 23syl 14 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (subringAlg ‘𝑊) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩)))
25 simpr 110 . . . . . . 7 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆)
2625oveq2d 5935 . . . . . 6 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (𝑊s 𝑠) = (𝑊s 𝑆))
2726opeq2d 3812 . . . . 5 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩ = ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩)
2827oveq2d 5935 . . . 4 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) = (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩))
2928oveq1d 5934 . . 3 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) = ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
3029oveq1d 5934 . 2 (((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) ∧ 𝑠 = 𝑆) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
31 simpr 110 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑆 ⊆ (Base‘𝑊))
32 elpw2g 4186 . . . 4 ((Base‘𝑊) ∈ V → (𝑆 ∈ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊)))
332, 20, 323syl 17 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (𝑆 ∈ 𝒫 (Base‘𝑊) ↔ 𝑆 ⊆ (Base‘𝑊)))
3431, 33mpbird 167 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑆 ∈ 𝒫 (Base‘𝑊))
35 simpl 109 . . . . 5 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑊𝑉)
36 scaslid 12773 . . . . . . 7 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
3736simpri 113 . . . . . 6 (Scalar‘ndx) ∈ ℕ
3837a1i 9 . . . . 5 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (Scalar‘ndx) ∈ ℕ)
3934elexd 2773 . . . . . 6 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → 𝑆 ∈ V)
40 ressex 12686 . . . . . 6 ((𝑊𝑉𝑆 ∈ V) → (𝑊s 𝑆) ∈ V)
4139, 40syldan 282 . . . . 5 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (𝑊s 𝑆) ∈ V)
42 setsex 12653 . . . . 5 ((𝑊𝑉 ∧ (Scalar‘ndx) ∈ ℕ ∧ (𝑊s 𝑆) ∈ V) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
4335, 38, 41, 42syl3anc 1249 . . . 4 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V)
44 vscaslid 12783 . . . . . 6 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
4544simpri 113 . . . . 5 ( ·𝑠 ‘ndx) ∈ ℕ
4645a1i 9 . . . 4 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ( ·𝑠 ‘ndx) ∈ ℕ)
47 mulrslid 12752 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
4847slotex 12648 . . . . 5 (𝑊𝑉 → (.r𝑊) ∈ V)
4948adantr 276 . . . 4 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (.r𝑊) ∈ V)
50 setsex 12653 . . . 4 (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) ∈ V ∧ ( ·𝑠 ‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
5143, 46, 49, 50syl3anc 1249 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V)
52 ipslid 12791 . . . . 5 (·𝑖 = Slot (·𝑖‘ndx) ∧ (·𝑖‘ndx) ∈ ℕ)
5352simpri 113 . . . 4 (·𝑖‘ndx) ∈ ℕ
5453a1i 9 . . 3 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (·𝑖‘ndx) ∈ ℕ)
55 setsex 12653 . . 3 ((((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) ∈ V ∧ (·𝑖‘ndx) ∈ ℕ ∧ (.r𝑊) ∈ V) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) ∈ V)
5651, 54, 49, 55syl3anc 1249 . 2 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) ∈ V)
5724, 30, 34, 56fvmptd 5639 1 ((𝑊𝑉𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s 𝑆)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  wss 3154  𝒫 cpw 3602  cop 3622  cmpt 4091   Fn wfn 5250  cfv 5255  (class class class)co 5919  cn 8984  ndxcnx 12618   sSet csts 12619  Slot cslot 12620  Basecbs 12621  s cress 12622  .rcmulr 12699  Scalarcsca 12701   ·𝑠 cvsca 12702  ·𝑖cip 12703  subringAlg csra 13932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-sra 13934
This theorem is referenced by:  sralemg  13937  srascag  13941  sravscag  13942  sraipg  13943  sraex  13945
  Copyright terms: Public domain W3C validator