ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulreap GIF version

Theorem mulreap 10636
Description: A product with a real multiplier apart from zero is real iff the multiplicand is real. (Contributed by Jim Kingdon, 14-Jun-2020.)
Assertion
Ref Expression
mulreap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ))

Proof of Theorem mulreap
StepHypRef Expression
1 rereb 10635 . . 3 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
213ad2ant1 1002 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
3 recl 10625 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
43recnd 7794 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
543ad2ant1 1002 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℜ‘𝐴) ∈ ℂ)
6 simp1 981 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → 𝐴 ∈ ℂ)
7 recn 7753 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
87anim1i 338 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐵 ∈ ℂ ∧ 𝐵 # 0))
983adant1 999 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐵 ∈ ℂ ∧ 𝐵 # 0))
10 mulcanap 8426 . . 3 (((ℜ‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘𝐴) = 𝐴))
115, 6, 9, 10syl3anc 1216 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘𝐴) = 𝐴))
127adantr 274 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈ ℂ)
134adantl 275 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
14 ax-icn 7715 . . . . . . . . . . . 12 i ∈ ℂ
15 imcl 10626 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1615recnd 7794 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
17 mulcl 7747 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
1814, 16, 17sylancr 410 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
1918adantl 275 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
2012, 13, 19adddid 7790 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((𝐵 · (ℜ‘𝐴)) + (𝐵 · (i · (ℑ‘𝐴)))))
21 replim 10631 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2221adantl 275 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2322oveq2d 5790 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) = (𝐵 · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
24 mul12 7891 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (𝐵 · (ℑ‘𝐴))) = (𝐵 · (i · (ℑ‘𝐴))))
2514, 24mp3an1 1302 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (𝐵 · (ℑ‘𝐴))) = (𝐵 · (i · (ℑ‘𝐴))))
267, 16, 25syl2an 287 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (i · (𝐵 · (ℑ‘𝐴))) = (𝐵 · (i · (ℑ‘𝐴))))
2726oveq2d 5790 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴)))) = ((𝐵 · (ℜ‘𝐴)) + (𝐵 · (i · (ℑ‘𝐴)))))
2820, 23, 273eqtr4d 2182 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) = ((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴)))))
2928fveq2d 5425 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘(𝐵 · 𝐴)) = (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))))
30 remulcl 7748 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (𝐵 · (ℜ‘𝐴)) ∈ ℝ)
313, 30sylan2 284 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℜ‘𝐴)) ∈ ℝ)
32 remulcl 7748 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (𝐵 · (ℑ‘𝐴)) ∈ ℝ)
3315, 32sylan2 284 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℑ‘𝐴)) ∈ ℝ)
34 crre 10629 . . . . . . . 8 (((𝐵 · (ℜ‘𝐴)) ∈ ℝ ∧ (𝐵 · (ℑ‘𝐴)) ∈ ℝ) → (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))) = (𝐵 · (ℜ‘𝐴)))
3531, 33, 34syl2anc 408 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))) = (𝐵 · (ℜ‘𝐴)))
3629, 35eqtr2d 2173 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℜ‘𝐴)) = (ℜ‘(𝐵 · 𝐴)))
3736eqeq1d 2148 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
38 mulcl 7747 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) ∈ ℂ)
397, 38sylan 281 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) ∈ ℂ)
40 rereb 10635 . . . . . 6 ((𝐵 · 𝐴) ∈ ℂ → ((𝐵 · 𝐴) ∈ ℝ ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
4139, 40syl 14 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · 𝐴) ∈ ℝ ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
4237, 41bitr4d 190 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
4342ancoms 266 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
44433adant3 1001 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
452, 11, 443bitr2d 215 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  ici 7622   + caddc 7623   · cmul 7625   # cap 8343  cre 10612  cim 10613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-2 8779  df-cj 10614  df-re 10615  df-im 10616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator