ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulreap GIF version

Theorem mulreap 11029
Description: A product with a real multiplier apart from zero is real iff the multiplicand is real. (Contributed by Jim Kingdon, 14-Jun-2020.)
Assertion
Ref Expression
mulreap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ))

Proof of Theorem mulreap
StepHypRef Expression
1 rereb 11028 . . 3 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
213ad2ant1 1020 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
3 recl 11018 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
43recnd 8055 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
543ad2ant1 1020 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (ℜ‘𝐴) ∈ ℂ)
6 simp1 999 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → 𝐴 ∈ ℂ)
7 recn 8012 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
87anim1i 340 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐵 ∈ ℂ ∧ 𝐵 # 0))
983adant1 1017 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐵 ∈ ℂ ∧ 𝐵 # 0))
10 mulcanap 8692 . . 3 (((ℜ‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘𝐴) = 𝐴))
115, 6, 9, 10syl3anc 1249 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘𝐴) = 𝐴))
127adantr 276 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → 𝐵 ∈ ℂ)
134adantl 277 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
14 ax-icn 7974 . . . . . . . . . . . 12 i ∈ ℂ
15 imcl 11019 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1615recnd 8055 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
17 mulcl 8006 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
1814, 16, 17sylancr 414 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
1918adantl 277 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
2012, 13, 19adddid 8051 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((𝐵 · (ℜ‘𝐴)) + (𝐵 · (i · (ℑ‘𝐴)))))
21 replim 11024 . . . . . . . . . . 11 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2221adantl 277 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2322oveq2d 5938 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) = (𝐵 · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
24 mul12 8155 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (𝐵 · (ℑ‘𝐴))) = (𝐵 · (i · (ℑ‘𝐴))))
2514, 24mp3an1 1335 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (𝐵 · (ℑ‘𝐴))) = (𝐵 · (i · (ℑ‘𝐴))))
267, 16, 25syl2an 289 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (i · (𝐵 · (ℑ‘𝐴))) = (𝐵 · (i · (ℑ‘𝐴))))
2726oveq2d 5938 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴)))) = ((𝐵 · (ℜ‘𝐴)) + (𝐵 · (i · (ℑ‘𝐴)))))
2820, 23, 273eqtr4d 2239 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) = ((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴)))))
2928fveq2d 5562 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘(𝐵 · 𝐴)) = (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))))
30 remulcl 8007 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (𝐵 · (ℜ‘𝐴)) ∈ ℝ)
313, 30sylan2 286 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℜ‘𝐴)) ∈ ℝ)
32 remulcl 8007 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (𝐵 · (ℑ‘𝐴)) ∈ ℝ)
3315, 32sylan2 286 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℑ‘𝐴)) ∈ ℝ)
34 crre 11022 . . . . . . . 8 (((𝐵 · (ℜ‘𝐴)) ∈ ℝ ∧ (𝐵 · (ℑ‘𝐴)) ∈ ℝ) → (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))) = (𝐵 · (ℜ‘𝐴)))
3531, 33, 34syl2anc 411 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (ℜ‘((𝐵 · (ℜ‘𝐴)) + (i · (𝐵 · (ℑ‘𝐴))))) = (𝐵 · (ℜ‘𝐴)))
3629, 35eqtr2d 2230 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · (ℜ‘𝐴)) = (ℜ‘(𝐵 · 𝐴)))
3736eqeq1d 2205 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
38 mulcl 8006 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) ∈ ℂ)
397, 38sylan 283 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → (𝐵 · 𝐴) ∈ ℂ)
40 rereb 11028 . . . . . 6 ((𝐵 · 𝐴) ∈ ℂ → ((𝐵 · 𝐴) ∈ ℝ ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
4139, 40syl 14 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · 𝐴) ∈ ℝ ↔ (ℜ‘(𝐵 · 𝐴)) = (𝐵 · 𝐴)))
4237, 41bitr4d 191 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℂ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
4342ancoms 268 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
44433adant3 1019 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → ((𝐵 · (ℜ‘𝐴)) = (𝐵 · 𝐴) ↔ (𝐵 · 𝐴) ∈ ℝ))
452, 11, 443bitr2d 216 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  ici 7881   + caddc 7882   · cmul 7884   # cap 8608  cre 11005  cim 11006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-2 9049  df-cj 11007  df-re 11008  df-im 11009
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator