![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mul12d | GIF version |
Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
muld.1 | โข (๐ โ ๐ด โ โ) |
addcomd.2 | โข (๐ โ ๐ต โ โ) |
mul12d.3 | โข (๐ โ ๐ถ โ โ) |
Ref | Expression |
---|---|
mul12d | โข (๐ โ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ต ยท (๐ด ยท ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | . 2 โข (๐ โ ๐ด โ โ) | |
2 | addcomd.2 | . 2 โข (๐ โ ๐ต โ โ) | |
3 | mul12d.3 | . 2 โข (๐ โ ๐ถ โ โ) | |
4 | mul12 8088 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ต ยท (๐ด ยท ๐ถ))) | |
5 | 1, 2, 3, 4 | syl3anc 1238 | 1 โข (๐ โ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ต ยท (๐ด ยท ๐ถ))) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 = wceq 1353 โ wcel 2148 (class class class)co 5877 โcc 7811 ยท cmul 7818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-mulcom 7914 ax-mulass 7916 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5880 |
This theorem is referenced by: mulreim 8563 divrecap 8647 remullem 10882 cvgratnnlemnexp 11534 cvgratnnlemmn 11535 tanval3ap 11724 sinadd 11746 dvdscmulr 11829 bezoutlemnewy 11999 dvdsmulgcd 12028 lcmgcdlem 12079 cncongr1 12105 prmdiv 12237 tangtx 14344 lgseisenlem2 14536 2sqlem4 14550 |
Copyright terms: Public domain | W3C validator |