| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > demoivre | GIF version | ||
| Description: De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula, but restricted to nonnegative integer powers. See also demoivreALT 11923 for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007.) |
| Ref | Expression |
|---|---|
| demoivre | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 7972 | . . . 4 ⊢ i ∈ ℂ | |
| 2 | mulcl 8004 | . . . 4 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 3 | 1, 2 | mpan 424 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
| 4 | efexp 11831 | . . 3 ⊢ (((i · 𝐴) ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑𝑁)) | |
| 5 | 3, 4 | sylan 283 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (i · 𝐴))) = ((exp‘(i · 𝐴))↑𝑁)) |
| 6 | zcn 9328 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 7 | mul12 8153 | . . . . . . 7 ⊢ ((𝑁 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 · (i · 𝐴)) = (i · (𝑁 · 𝐴))) | |
| 8 | 1, 7 | mp3an2 1336 | . . . . . 6 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 · (i · 𝐴)) = (i · (𝑁 · 𝐴))) |
| 9 | 8 | fveq2d 5562 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘(𝑁 · (i · 𝐴))) = (exp‘(i · (𝑁 · 𝐴)))) |
| 10 | mulcl 8004 | . . . . . 6 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 · 𝐴) ∈ ℂ) | |
| 11 | efival 11881 | . . . . . 6 ⊢ ((𝑁 · 𝐴) ∈ ℂ → (exp‘(i · (𝑁 · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) | |
| 12 | 10, 11 | syl 14 | . . . . 5 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘(i · (𝑁 · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| 13 | 9, 12 | eqtrd 2229 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (exp‘(𝑁 · (i · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| 14 | 13 | ancoms 268 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (exp‘(𝑁 · (i · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| 15 | 6, 14 | sylan2 286 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · (i · 𝐴))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| 16 | efival 11881 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴)))) | |
| 17 | 16 | oveq1d 5937 | . . 3 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · 𝐴))↑𝑁) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁)) |
| 18 | 17 | adantr 276 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → ((exp‘(i · 𝐴))↑𝑁) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁)) |
| 19 | 5, 15, 18 | 3eqtr3rd 2238 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 ℂcc 7875 ici 7879 + caddc 7880 · cmul 7882 ℤcz 9323 ↑cexp 10615 expce 11791 sincsin 11793 cosccos 11794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-pre-mulext 7995 ax-arch 7996 ax-caucvg 7997 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-disj 4011 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-sup 7048 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-ap 8606 df-div 8697 df-inn 8988 df-2 9046 df-3 9047 df-4 9048 df-n0 9247 df-z 9324 df-uz 9599 df-q 9691 df-rp 9726 df-ico 9966 df-fz 10081 df-fzo 10215 df-seqfrec 10525 df-exp 10616 df-fac 10803 df-bc 10825 df-ihash 10853 df-cj 10992 df-re 10993 df-im 10994 df-rsqrt 11148 df-abs 11149 df-clim 11428 df-sumdc 11503 df-ef 11797 df-sin 11799 df-cos 11800 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |