![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvmptf | GIF version |
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5634 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
fvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
fvmptf.2 | ⊢ Ⅎ𝑥𝐶 |
fvmptf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
fvmptf.4 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
Ref | Expression |
---|---|
fvmptf | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . . 3 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
2 | fvmptf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | fvmptf.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
4 | 3 | nfel1 2347 | . . . . 5 ⊢ Ⅎ𝑥 𝐶 ∈ V |
5 | fvmptf.4 | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
6 | nfmpt1 4123 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
7 | 5, 6 | nfcxfr 2333 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 |
8 | 7, 2 | nffv 5565 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
9 | 8, 3 | nfeq 2344 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝐴) = 𝐶 |
10 | 4, 9 | nfim 1583 | . . . 4 ⊢ Ⅎ𝑥(𝐶 ∈ V → (𝐹‘𝐴) = 𝐶) |
11 | fvmptf.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
12 | 11 | eleq1d 2262 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
13 | fveq2 5555 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
14 | 13, 11 | eqeq12d 2208 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) = 𝐵 ↔ (𝐹‘𝐴) = 𝐶)) |
15 | 12, 14 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹‘𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶))) |
16 | 5 | fvmpt2 5642 | . . . . 5 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) = 𝐵) |
17 | 16 | ex 115 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (𝐵 ∈ V → (𝐹‘𝑥) = 𝐵)) |
18 | 2, 10, 15, 17 | vtoclgaf 2826 | . . 3 ⊢ (𝐴 ∈ 𝐷 → (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶)) |
19 | 1, 18 | syl5 32 | . 2 ⊢ (𝐴 ∈ 𝐷 → (𝐶 ∈ 𝑉 → (𝐹‘𝐴) = 𝐶)) |
20 | 19 | imp 124 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Ⅎwnfc 2323 Vcvv 2760 ↦ cmpt 4091 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 |
This theorem is referenced by: fvmptd3 5652 elfvmptrab1 5653 sumrbdclem 11523 fsum3 11533 isumss 11537 prodrbdclem 11717 prodmodclem2a 11722 zproddc 11725 fprodntrivap 11730 prodssdc 11735 pcmpt 12484 |
Copyright terms: Public domain | W3C validator |