ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptf GIF version

Theorem fvmptf 5465
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5449 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
fvmptf.1 𝑥𝐴
fvmptf.2 𝑥𝐶
fvmptf.3 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptf.4 𝐹 = (𝑥𝐷𝐵)
Assertion
Ref Expression
fvmptf ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
Distinct variable group:   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptf
StepHypRef Expression
1 elex 2666 . . 3 (𝐶𝑉𝐶 ∈ V)
2 fvmptf.1 . . . 4 𝑥𝐴
3 fvmptf.2 . . . . . 6 𝑥𝐶
43nfel1 2264 . . . . 5 𝑥 𝐶 ∈ V
5 fvmptf.4 . . . . . . . 8 𝐹 = (𝑥𝐷𝐵)
6 nfmpt1 3979 . . . . . . . 8 𝑥(𝑥𝐷𝐵)
75, 6nfcxfr 2250 . . . . . . 7 𝑥𝐹
87, 2nffv 5383 . . . . . 6 𝑥(𝐹𝐴)
98, 3nfeq 2261 . . . . 5 𝑥(𝐹𝐴) = 𝐶
104, 9nfim 1532 . . . 4 𝑥(𝐶 ∈ V → (𝐹𝐴) = 𝐶)
11 fvmptf.3 . . . . . 6 (𝑥 = 𝐴𝐵 = 𝐶)
1211eleq1d 2181 . . . . 5 (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V))
13 fveq2 5373 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1413, 11eqeq12d 2127 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) = 𝐵 ↔ (𝐹𝐴) = 𝐶))
1512, 14imbi12d 233 . . . 4 (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹𝐴) = 𝐶)))
165fvmpt2 5456 . . . . 5 ((𝑥𝐷𝐵 ∈ V) → (𝐹𝑥) = 𝐵)
1716ex 114 . . . 4 (𝑥𝐷 → (𝐵 ∈ V → (𝐹𝑥) = 𝐵))
182, 10, 15, 17vtoclgaf 2720 . . 3 (𝐴𝐷 → (𝐶 ∈ V → (𝐹𝐴) = 𝐶))
191, 18syl5 32 . 2 (𝐴𝐷 → (𝐶𝑉 → (𝐹𝐴) = 𝐶))
2019imp 123 1 ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1312  wcel 1461  wnfc 2240  Vcvv 2655  cmpt 3947  cfv 5079
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-csb 2970  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-iota 5044  df-fun 5081  df-fv 5087
This theorem is referenced by:  fvmptd3  5466  elfvmptrab1  5467  sumrbdclem  11030  fsum3  11041  isumss  11045
  Copyright terms: Public domain W3C validator