| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptf | GIF version | ||
| Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5637 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| fvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| fvmptf.2 | ⊢ Ⅎ𝑥𝐶 |
| fvmptf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptf.4 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptf | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . . 3 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
| 2 | fvmptf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | fvmptf.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
| 4 | 3 | nfel1 2350 | . . . . 5 ⊢ Ⅎ𝑥 𝐶 ∈ V |
| 5 | fvmptf.4 | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 6 | nfmpt1 4126 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 7 | 5, 6 | nfcxfr 2336 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 |
| 8 | 7, 2 | nffv 5568 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| 9 | 8, 3 | nfeq 2347 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝐴) = 𝐶 |
| 10 | 4, 9 | nfim 1586 | . . . 4 ⊢ Ⅎ𝑥(𝐶 ∈ V → (𝐹‘𝐴) = 𝐶) |
| 11 | fvmptf.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 12 | 11 | eleq1d 2265 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
| 13 | fveq2 5558 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 14 | 13, 11 | eqeq12d 2211 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) = 𝐵 ↔ (𝐹‘𝐴) = 𝐶)) |
| 15 | 12, 14 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹‘𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶))) |
| 16 | 5 | fvmpt2 5645 | . . . . 5 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) = 𝐵) |
| 17 | 16 | ex 115 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (𝐵 ∈ V → (𝐹‘𝑥) = 𝐵)) |
| 18 | 2, 10, 15, 17 | vtoclgaf 2829 | . . 3 ⊢ (𝐴 ∈ 𝐷 → (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶)) |
| 19 | 1, 18 | syl5 32 | . 2 ⊢ (𝐴 ∈ 𝐷 → (𝐶 ∈ 𝑉 → (𝐹‘𝐴) = 𝐶)) |
| 20 | 19 | imp 124 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Ⅎwnfc 2326 Vcvv 2763 ↦ cmpt 4094 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 |
| This theorem is referenced by: fvmptd3 5655 elfvmptrab1 5656 sumrbdclem 11542 fsum3 11552 isumss 11556 prodrbdclem 11736 prodmodclem2a 11741 zproddc 11744 fprodntrivap 11749 prodssdc 11754 pcmpt 12512 |
| Copyright terms: Public domain | W3C validator |