| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptf | GIF version | ||
| Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5665 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| fvmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| fvmptf.2 | ⊢ Ⅎ𝑥𝐶 |
| fvmptf.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| fvmptf.4 | ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptf | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2785 | . . 3 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
| 2 | fvmptf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | fvmptf.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
| 4 | 3 | nfel1 2360 | . . . . 5 ⊢ Ⅎ𝑥 𝐶 ∈ V |
| 5 | fvmptf.4 | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 6 | nfmpt1 4142 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 7 | 5, 6 | nfcxfr 2346 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 |
| 8 | 7, 2 | nffv 5596 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝐴) |
| 9 | 8, 3 | nfeq 2357 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝐴) = 𝐶 |
| 10 | 4, 9 | nfim 1596 | . . . 4 ⊢ Ⅎ𝑥(𝐶 ∈ V → (𝐹‘𝐴) = 𝐶) |
| 11 | fvmptf.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 12 | 11 | eleq1d 2275 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V)) |
| 13 | fveq2 5586 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 14 | 13, 11 | eqeq12d 2221 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) = 𝐵 ↔ (𝐹‘𝐴) = 𝐶)) |
| 15 | 12, 14 | imbi12d 234 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹‘𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶))) |
| 16 | 5 | fvmpt2 5673 | . . . . 5 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ V) → (𝐹‘𝑥) = 𝐵) |
| 17 | 16 | ex 115 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (𝐵 ∈ V → (𝐹‘𝑥) = 𝐵)) |
| 18 | 2, 10, 15, 17 | vtoclgaf 2840 | . . 3 ⊢ (𝐴 ∈ 𝐷 → (𝐶 ∈ V → (𝐹‘𝐴) = 𝐶)) |
| 19 | 1, 18 | syl5 32 | . 2 ⊢ (𝐴 ∈ 𝐷 → (𝐶 ∈ 𝑉 → (𝐹‘𝐴) = 𝐶)) |
| 20 | 19 | imp 124 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑉) → (𝐹‘𝐴) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Ⅎwnfc 2336 Vcvv 2773 ↦ cmpt 4110 ‘cfv 5277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-csb 3096 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 |
| This theorem is referenced by: fvmptd3 5683 elfvmptrab1 5684 sumrbdclem 11738 fsum3 11748 isumss 11752 prodrbdclem 11932 prodmodclem2a 11937 zproddc 11940 fprodntrivap 11945 prodssdc 11950 pcmpt 12716 |
| Copyright terms: Public domain | W3C validator |