ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptf GIF version

Theorem fvmptf 5588
Description: Value of a function given by an ordered-pair class abstraction. This version of fvmptg 5572 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
fvmptf.1 𝑥𝐴
fvmptf.2 𝑥𝐶
fvmptf.3 (𝑥 = 𝐴𝐵 = 𝐶)
fvmptf.4 𝐹 = (𝑥𝐷𝐵)
Assertion
Ref Expression
fvmptf ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
Distinct variable group:   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptf
StepHypRef Expression
1 elex 2741 . . 3 (𝐶𝑉𝐶 ∈ V)
2 fvmptf.1 . . . 4 𝑥𝐴
3 fvmptf.2 . . . . . 6 𝑥𝐶
43nfel1 2323 . . . . 5 𝑥 𝐶 ∈ V
5 fvmptf.4 . . . . . . . 8 𝐹 = (𝑥𝐷𝐵)
6 nfmpt1 4082 . . . . . . . 8 𝑥(𝑥𝐷𝐵)
75, 6nfcxfr 2309 . . . . . . 7 𝑥𝐹
87, 2nffv 5506 . . . . . 6 𝑥(𝐹𝐴)
98, 3nfeq 2320 . . . . 5 𝑥(𝐹𝐴) = 𝐶
104, 9nfim 1565 . . . 4 𝑥(𝐶 ∈ V → (𝐹𝐴) = 𝐶)
11 fvmptf.3 . . . . . 6 (𝑥 = 𝐴𝐵 = 𝐶)
1211eleq1d 2239 . . . . 5 (𝑥 = 𝐴 → (𝐵 ∈ V ↔ 𝐶 ∈ V))
13 fveq2 5496 . . . . . 6 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1413, 11eqeq12d 2185 . . . . 5 (𝑥 = 𝐴 → ((𝐹𝑥) = 𝐵 ↔ (𝐹𝐴) = 𝐶))
1512, 14imbi12d 233 . . . 4 (𝑥 = 𝐴 → ((𝐵 ∈ V → (𝐹𝑥) = 𝐵) ↔ (𝐶 ∈ V → (𝐹𝐴) = 𝐶)))
165fvmpt2 5579 . . . . 5 ((𝑥𝐷𝐵 ∈ V) → (𝐹𝑥) = 𝐵)
1716ex 114 . . . 4 (𝑥𝐷 → (𝐵 ∈ V → (𝐹𝑥) = 𝐵))
182, 10, 15, 17vtoclgaf 2795 . . 3 (𝐴𝐷 → (𝐶 ∈ V → (𝐹𝐴) = 𝐶))
191, 18syl5 32 . 2 (𝐴𝐷 → (𝐶𝑉 → (𝐹𝐴) = 𝐶))
2019imp 123 1 ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wnfc 2299  Vcvv 2730  cmpt 4050  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by:  fvmptd3  5589  elfvmptrab1  5590  sumrbdclem  11340  fsum3  11350  isumss  11354  prodrbdclem  11534  prodmodclem2a  11539  zproddc  11542  fprodntrivap  11547  prodssdc  11552  pcmpt  12295
  Copyright terms: Public domain W3C validator