| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfunv | GIF version | ||
| Description: The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.) |
| Ref | Expression |
|---|---|
| nfunv | ⊢ ¬ Fun V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 4692 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
| 2 | 0ex 4161 | . . . 4 ⊢ ∅ ∈ V | |
| 3 | df-rel 4671 | . . . . . 6 ⊢ (Rel V ↔ V ⊆ (V × V)) | |
| 4 | 3 | biimpi 120 | . . . . 5 ⊢ (Rel V → V ⊆ (V × V)) |
| 5 | 4 | sseld 3183 | . . . 4 ⊢ (Rel V → (∅ ∈ V → ∅ ∈ (V × V))) |
| 6 | 2, 5 | mpi 15 | . . 3 ⊢ (Rel V → ∅ ∈ (V × V)) |
| 7 | 1, 6 | mto 663 | . 2 ⊢ ¬ Rel V |
| 8 | funrel 5276 | . 2 ⊢ (Fun V → Rel V) | |
| 9 | 7, 8 | mto 663 | 1 ⊢ ¬ Fun V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 ∅c0 3451 × cxp 4662 Rel wrel 4669 Fun wfun 5253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 df-xp 4670 df-rel 4671 df-fun 5261 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |