ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunv GIF version

Theorem nfunv 5318
Description: The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.)
Assertion
Ref Expression
nfunv ¬ Fun V

Proof of Theorem nfunv
StepHypRef Expression
1 0nelxp 4716 . . 3 ¬ ∅ ∈ (V × V)
2 0ex 4182 . . . 4 ∅ ∈ V
3 df-rel 4695 . . . . . 6 (Rel V ↔ V ⊆ (V × V))
43biimpi 120 . . . . 5 (Rel V → V ⊆ (V × V))
54sseld 3196 . . . 4 (Rel V → (∅ ∈ V → ∅ ∈ (V × V)))
62, 5mpi 15 . . 3 (Rel V → ∅ ∈ (V × V))
71, 6mto 664 . 2 ¬ Rel V
8 funrel 5302 . 2 (Fun V → Rel V)
97, 8mto 664 1 ¬ Fun V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2177  Vcvv 2773  wss 3170  c0 3464   × cxp 4686  Rel wrel 4693  Fun wfun 5279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-opab 4117  df-xp 4694  df-rel 4695  df-fun 5287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator