ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunv GIF version

Theorem nfunv 5060
Description: The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.)
Assertion
Ref Expression
nfunv ¬ Fun V

Proof of Theorem nfunv
StepHypRef Expression
1 0nelxp 4479 . . 3 ¬ ∅ ∈ (V × V)
2 0ex 3972 . . . 4 ∅ ∈ V
3 df-rel 4459 . . . . . 6 (Rel V ↔ V ⊆ (V × V))
43biimpi 119 . . . . 5 (Rel V → V ⊆ (V × V))
54sseld 3025 . . . 4 (Rel V → (∅ ∈ V → ∅ ∈ (V × V)))
62, 5mpi 15 . . 3 (Rel V → ∅ ∈ (V × V))
71, 6mto 624 . 2 ¬ Rel V
8 funrel 5045 . 2 (Fun V → Rel V)
97, 8mto 624 1 ¬ Fun V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 1439  Vcvv 2620  wss 3000  c0 3287   × cxp 4450  Rel wrel 4457  Fun wfun 5022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-opab 3906  df-xp 4458  df-rel 4459  df-fun 5030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator