![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfunv | GIF version |
Description: The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.) |
Ref | Expression |
---|---|
nfunv | ⊢ ¬ Fun V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4687 | . . 3 ⊢ ¬ ∅ ∈ (V × V) | |
2 | 0ex 4156 | . . . 4 ⊢ ∅ ∈ V | |
3 | df-rel 4666 | . . . . . 6 ⊢ (Rel V ↔ V ⊆ (V × V)) | |
4 | 3 | biimpi 120 | . . . . 5 ⊢ (Rel V → V ⊆ (V × V)) |
5 | 4 | sseld 3178 | . . . 4 ⊢ (Rel V → (∅ ∈ V → ∅ ∈ (V × V))) |
6 | 2, 5 | mpi 15 | . . 3 ⊢ (Rel V → ∅ ∈ (V × V)) |
7 | 1, 6 | mto 663 | . 2 ⊢ ¬ Rel V |
8 | funrel 5271 | . 2 ⊢ (Fun V → Rel V) | |
9 | 7, 8 | mto 663 | 1 ⊢ ¬ Fun V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 ∅c0 3446 × cxp 4657 Rel wrel 4664 Fun wfun 5248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-opab 4091 df-xp 4665 df-rel 4666 df-fun 5256 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |