ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunv GIF version

Theorem nfunv 5287
Description: The universe is not a function. (Contributed by Raph Levien, 27-Jan-2004.)
Assertion
Ref Expression
nfunv ¬ Fun V

Proof of Theorem nfunv
StepHypRef Expression
1 0nelxp 4687 . . 3 ¬ ∅ ∈ (V × V)
2 0ex 4156 . . . 4 ∅ ∈ V
3 df-rel 4666 . . . . . 6 (Rel V ↔ V ⊆ (V × V))
43biimpi 120 . . . . 5 (Rel V → V ⊆ (V × V))
54sseld 3178 . . . 4 (Rel V → (∅ ∈ V → ∅ ∈ (V × V)))
62, 5mpi 15 . . 3 (Rel V → ∅ ∈ (V × V))
71, 6mto 663 . 2 ¬ Rel V
8 funrel 5271 . 2 (Fun V → Rel V)
97, 8mto 663 1 ¬ Fun V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2164  Vcvv 2760  wss 3153  c0 3446   × cxp 4657  Rel wrel 4664  Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665  df-rel 4666  df-fun 5256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator