![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0red | GIF version |
Description: A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0red | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 8879 | . 2 ⊢ ℕ0 ⊆ ℝ | |
2 | nn0red.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
3 | 1, 2 | sseldi 3059 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1461 ℝcr 7540 ℕ0cn0 8875 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-cnex 7630 ax-resscn 7631 ax-1re 7633 ax-addrcl 7636 ax-rnegex 7648 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-sn 3497 df-int 3736 df-inn 8625 df-n0 8876 |
This theorem is referenced by: nn0cnd 8930 nn0readdcl 8934 nn01to3 9305 flqmulnn0 9959 modifeq2int 10046 modaddmodup 10047 modaddmodlo 10048 modsumfzodifsn 10056 expnegap0 10188 nn0le2msqd 10352 nn0opthlem2d 10354 nn0opthd 10355 faclbnd6 10377 bcval5 10396 filtinf 10425 zfz1isolemiso 10469 mertenslemi1 11190 efcllemp 11209 eftlub 11241 oddge22np1 11420 nn0oddm1d2 11448 gcdaddm 11514 bezoutlemsup 11537 gcdzeq 11550 dvdssqlem 11558 nn0seqcvgd 11562 lcmneg 11595 mulgcddvds 11615 qredeu 11618 pw2dvdseulemle 11684 pw2dvdseu 11685 nn0sqrtelqelz 11723 nonsq 11724 ennnfoneleminc 11763 ennnfonelemkh 11764 ennnfonelemex 11766 ennnfonelemim 11776 |
Copyright terms: Public domain | W3C validator |