Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0red | GIF version |
Description: A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0red | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 9153 | . 2 ⊢ ℕ0 ⊆ ℝ | |
2 | nn0red.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
3 | 1, 2 | sselid 3151 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 ℝcr 7785 ℕ0cn0 9149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 ax-rnegex 7895 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-int 3841 df-inn 8893 df-n0 9150 |
This theorem is referenced by: nn0cnd 9204 nn0readdcl 9208 nn01to3 9590 xnn0dcle 9773 flqmulnn0 10269 modifeq2int 10356 modaddmodup 10357 modaddmodlo 10358 modsumfzodifsn 10366 expnegap0 10498 nn0leexp2 10659 nn0le2msqd 10667 nn0opthlem2d 10669 nn0opthd 10670 faclbnd6 10692 bcval5 10711 filtinf 10739 zfz1isolemiso 10787 mertenslemi1 11511 efcllemp 11634 eftlub 11666 oddge22np1 11853 nn0oddm1d2 11881 gcdaddm 11952 bezoutlemsup 11977 gcdzeq 11990 dvdssqlem 11998 nn0seqcvgd 12008 lcmneg 12041 mulgcddvds 12061 qredeu 12064 pw2dvdseulemle 12134 pw2dvdseu 12135 nn0sqrtelqelz 12173 nonsq 12174 pythagtriplem3 12234 pythagtriplem6 12237 pythagtriplem7 12238 pclemub 12254 pcprendvds 12257 pcpremul 12260 pcidlem 12289 pcgcd1 12294 pc2dvds 12296 pcz 12298 pcprmpw2 12299 fldivp1 12313 pcfaclem 12314 pcfac 12315 pcbc 12316 ennnfoneleminc 12379 ennnfonelemkh 12380 ennnfonelemex 12382 ennnfonelemim 12392 2sqlem7 14037 2sqlem8 14039 |
Copyright terms: Public domain | W3C validator |