Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0red | GIF version |
Description: A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nn0red.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0red | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssre 9139 | . 2 ⊢ ℕ0 ⊆ ℝ | |
2 | nn0red.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
3 | 1, 2 | sselid 3145 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ℝcr 7773 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-int 3832 df-inn 8879 df-n0 9136 |
This theorem is referenced by: nn0cnd 9190 nn0readdcl 9194 nn01to3 9576 xnn0dcle 9759 flqmulnn0 10255 modifeq2int 10342 modaddmodup 10343 modaddmodlo 10344 modsumfzodifsn 10352 expnegap0 10484 nn0leexp2 10645 nn0le2msqd 10653 nn0opthlem2d 10655 nn0opthd 10656 faclbnd6 10678 bcval5 10697 filtinf 10726 zfz1isolemiso 10774 mertenslemi1 11498 efcllemp 11621 eftlub 11653 oddge22np1 11840 nn0oddm1d2 11868 gcdaddm 11939 bezoutlemsup 11964 gcdzeq 11977 dvdssqlem 11985 nn0seqcvgd 11995 lcmneg 12028 mulgcddvds 12048 qredeu 12051 pw2dvdseulemle 12121 pw2dvdseu 12122 nn0sqrtelqelz 12160 nonsq 12161 pythagtriplem3 12221 pythagtriplem6 12224 pythagtriplem7 12225 pclemub 12241 pcprendvds 12244 pcpremul 12247 pcidlem 12276 pcgcd1 12281 pc2dvds 12283 pcz 12285 pcprmpw2 12286 fldivp1 12300 pcfaclem 12301 pcfac 12302 pcbc 12303 ennnfoneleminc 12366 ennnfonelemkh 12367 ennnfonelemex 12369 ennnfonelemim 12379 2sqlem7 13751 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |