Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onntri52 | GIF version |
Description: Double negated ordinal trichotomy. (Contributed by James E. Hanson and Jim Kingdon, 2-Aug-2024.) |
Ref | Expression |
---|---|
onntri52 | ⊢ (¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidontri2or 7199 | . . . 4 ⊢ (EXMID ↔ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) | |
2 | 1 | biimpi 119 | . . 3 ⊢ (EXMID → ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
3 | 2 | con3i 622 | . 2 ⊢ (¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥) → ¬ EXMID) |
4 | 3 | con3i 622 | 1 ⊢ (¬ ¬ EXMID → ¬ ¬ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 ⊆ 𝑦 ∨ 𝑦 ⊆ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 698 ∀wral 2444 ⊆ wss 3116 EXMIDwem 4173 Oncon0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-exmid 4174 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: onntri2or 7202 |
Copyright terms: Public domain | W3C validator |