ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgdomlem GIF version

Theorem frecuzrdgdomlem 10352
Description: The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c (𝜑𝐶 ∈ ℤ)
frecuzrdgrclt.a (𝜑𝐴𝑆)
frecuzrdgrclt.t (𝜑𝑆𝑇)
frecuzrdgrclt.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrclt.r 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgdomlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frecuzrdgdomlem (𝜑 → dom ran 𝑅 = (ℤ𝐶))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem frecuzrdgdomlem
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6 (𝜑𝐶 ∈ ℤ)
2 frecuzrdgrclt.a . . . . . 6 (𝜑𝐴𝑆)
3 frecuzrdgrclt.t . . . . . 6 (𝜑𝑆𝑇)
4 frecuzrdgrclt.f . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrclt.r . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
61, 2, 3, 4, 5frecuzrdgrclt 10350 . . . . 5 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
7 frn 5346 . . . . 5 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
86, 7syl 14 . . . 4 (𝜑 → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
9 dmss 4803 . . . 4 (ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆) → dom ran 𝑅 ⊆ dom ((ℤ𝐶) × 𝑆))
108, 9syl 14 . . 3 (𝜑 → dom ran 𝑅 ⊆ dom ((ℤ𝐶) × 𝑆))
11 dmxpss 5034 . . 3 dom ((ℤ𝐶) × 𝑆) ⊆ (ℤ𝐶)
1210, 11sstrdi 3154 . 2 (𝜑 → dom ran 𝑅 ⊆ (ℤ𝐶))
138adantr 274 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
14 ffun 5340 . . . . . . . . . . . 12 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → Fun 𝑅)
156, 14syl 14 . . . . . . . . . . 11 (𝜑 → Fun 𝑅)
1615adantr 274 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → Fun 𝑅)
17 frecuzrdgdomlem.g . . . . . . . . . . . . 13 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
181, 17frec2uzf1od 10341 . . . . . . . . . . . 12 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
19 f1ocnvdm 5749 . . . . . . . . . . . 12 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
2018, 19sylan 281 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
21 fdm 5343 . . . . . . . . . . . . 13 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → dom 𝑅 = ω)
226, 21syl 14 . . . . . . . . . . . 12 (𝜑 → dom 𝑅 = ω)
2322adantr 274 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℤ𝐶)) → dom 𝑅 = ω)
2420, 23eleqtrrd 2246 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ dom 𝑅)
25 fvelrn 5616 . . . . . . . . . 10 ((Fun 𝑅 ∧ (𝐺𝑣) ∈ dom 𝑅) → (𝑅‘(𝐺𝑣)) ∈ ran 𝑅)
2616, 24, 25syl2anc 409 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) ∈ ran 𝑅)
2713, 26sseldd 3143 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
28 1st2nd2 6143 . . . . . . . 8 ((𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆) → (𝑅‘(𝐺𝑣)) = ⟨(1st ‘(𝑅‘(𝐺𝑣))), (2nd ‘(𝑅‘(𝐺𝑣)))⟩)
2927, 28syl 14 . . . . . . 7 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) = ⟨(1st ‘(𝑅‘(𝐺𝑣))), (2nd ‘(𝑅‘(𝐺𝑣)))⟩)
301adantr 274 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝐶 ∈ ℤ)
312adantr 274 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝐴𝑆)
323adantr 274 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑆𝑇)
334adantlr 469 . . . . . . . . . 10 (((𝜑𝑣 ∈ (ℤ𝐶)) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
3430, 31, 32, 33, 5, 20, 17frecuzrdgg 10351 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → (1st ‘(𝑅‘(𝐺𝑣))) = (𝐺‘(𝐺𝑣)))
35 f1ocnvfv2 5746 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑣 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝑣)) = 𝑣)
3618, 35sylan 281 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝑣)) = 𝑣)
3734, 36eqtrd 2198 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → (1st ‘(𝑅‘(𝐺𝑣))) = 𝑣)
3837opeq1d 3764 . . . . . . 7 ((𝜑𝑣 ∈ (ℤ𝐶)) → ⟨(1st ‘(𝑅‘(𝐺𝑣))), (2nd ‘(𝑅‘(𝐺𝑣)))⟩ = ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩)
3929, 38eqtrd 2198 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) = ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩)
4039, 26eqeltrrd 2244 . . . . 5 ((𝜑𝑣 ∈ (ℤ𝐶)) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅)
41 simpr 109 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑣 ∈ (ℤ𝐶))
42 xp2nd 6134 . . . . . . 7 ((𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
4327, 42syl 14 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
44 opeldmg 4809 . . . . . 6 ((𝑣 ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆) → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅𝑣 ∈ dom ran 𝑅))
4541, 43, 44syl2anc 409 . . . . 5 ((𝜑𝑣 ∈ (ℤ𝐶)) → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅𝑣 ∈ dom ran 𝑅))
4640, 45mpd 13 . . . 4 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑣 ∈ dom ran 𝑅)
4746ex 114 . . 3 (𝜑 → (𝑣 ∈ (ℤ𝐶) → 𝑣 ∈ dom ran 𝑅))
4847ssrdv 3148 . 2 (𝜑 → (ℤ𝐶) ⊆ dom ran 𝑅)
4912, 48eqssd 3159 1 (𝜑 → dom ran 𝑅 = (ℤ𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wss 3116  cop 3579  cmpt 4043  ωcom 4567   × cxp 4602  ccnv 4603  dom cdm 4604  ran crn 4605  Fun wfun 5182  wf 5184  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  cmpo 5844  1st c1st 6106  2nd c2nd 6107  freccfrec 6358  1c1 7754   + caddc 7756  cz 9191  cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467
This theorem is referenced by:  frecuzrdgdom  10353
  Copyright terms: Public domain W3C validator