ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgdomlem GIF version

Theorem frecuzrdgdomlem 10491
Description: The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c (𝜑𝐶 ∈ ℤ)
frecuzrdgrclt.a (𝜑𝐴𝑆)
frecuzrdgrclt.t (𝜑𝑆𝑇)
frecuzrdgrclt.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrclt.r 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgdomlem.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
Assertion
Ref Expression
frecuzrdgdomlem (𝜑 → dom ran 𝑅 = (ℤ𝐶))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem frecuzrdgdomlem
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6 (𝜑𝐶 ∈ ℤ)
2 frecuzrdgrclt.a . . . . . 6 (𝜑𝐴𝑆)
3 frecuzrdgrclt.t . . . . . 6 (𝜑𝑆𝑇)
4 frecuzrdgrclt.f . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrclt.r . . . . . 6 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
61, 2, 3, 4, 5frecuzrdgrclt 10489 . . . . 5 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
7 frn 5413 . . . . 5 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
86, 7syl 14 . . . 4 (𝜑 → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
9 dmss 4862 . . . 4 (ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆) → dom ran 𝑅 ⊆ dom ((ℤ𝐶) × 𝑆))
108, 9syl 14 . . 3 (𝜑 → dom ran 𝑅 ⊆ dom ((ℤ𝐶) × 𝑆))
11 dmxpss 5097 . . 3 dom ((ℤ𝐶) × 𝑆) ⊆ (ℤ𝐶)
1210, 11sstrdi 3192 . 2 (𝜑 → dom ran 𝑅 ⊆ (ℤ𝐶))
138adantr 276 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → ran 𝑅 ⊆ ((ℤ𝐶) × 𝑆))
14 ffun 5407 . . . . . . . . . . . 12 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → Fun 𝑅)
156, 14syl 14 . . . . . . . . . . 11 (𝜑 → Fun 𝑅)
1615adantr 276 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → Fun 𝑅)
17 frecuzrdgdomlem.g . . . . . . . . . . . . 13 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
181, 17frec2uzf1od 10480 . . . . . . . . . . . 12 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
19 f1ocnvdm 5825 . . . . . . . . . . . 12 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
2018, 19sylan 283 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
21 fdm 5410 . . . . . . . . . . . . 13 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → dom 𝑅 = ω)
226, 21syl 14 . . . . . . . . . . . 12 (𝜑 → dom 𝑅 = ω)
2322adantr 276 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℤ𝐶)) → dom 𝑅 = ω)
2420, 23eleqtrrd 2273 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ dom 𝑅)
25 fvelrn 5690 . . . . . . . . . 10 ((Fun 𝑅 ∧ (𝐺𝑣) ∈ dom 𝑅) → (𝑅‘(𝐺𝑣)) ∈ ran 𝑅)
2616, 24, 25syl2anc 411 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) ∈ ran 𝑅)
2713, 26sseldd 3181 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
28 1st2nd2 6230 . . . . . . . 8 ((𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆) → (𝑅‘(𝐺𝑣)) = ⟨(1st ‘(𝑅‘(𝐺𝑣))), (2nd ‘(𝑅‘(𝐺𝑣)))⟩)
2927, 28syl 14 . . . . . . 7 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) = ⟨(1st ‘(𝑅‘(𝐺𝑣))), (2nd ‘(𝑅‘(𝐺𝑣)))⟩)
301adantr 276 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝐶 ∈ ℤ)
312adantr 276 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝐴𝑆)
323adantr 276 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑆𝑇)
334adantlr 477 . . . . . . . . . 10 (((𝜑𝑣 ∈ (ℤ𝐶)) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
3430, 31, 32, 33, 5, 20, 17frecuzrdgg 10490 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → (1st ‘(𝑅‘(𝐺𝑣))) = (𝐺‘(𝐺𝑣)))
35 f1ocnvfv2 5822 . . . . . . . . . 10 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑣 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝑣)) = 𝑣)
3618, 35sylan 283 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝑣)) = 𝑣)
3734, 36eqtrd 2226 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → (1st ‘(𝑅‘(𝐺𝑣))) = 𝑣)
3837opeq1d 3811 . . . . . . 7 ((𝜑𝑣 ∈ (ℤ𝐶)) → ⟨(1st ‘(𝑅‘(𝐺𝑣))), (2nd ‘(𝑅‘(𝐺𝑣)))⟩ = ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩)
3929, 38eqtrd 2226 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) = ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩)
4039, 26eqeltrrd 2271 . . . . 5 ((𝜑𝑣 ∈ (ℤ𝐶)) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅)
41 simpr 110 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑣 ∈ (ℤ𝐶))
42 xp2nd 6221 . . . . . . 7 ((𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
4327, 42syl 14 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
44 opeldmg 4868 . . . . . 6 ((𝑣 ∈ (ℤ𝐶) ∧ (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆) → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅𝑣 ∈ dom ran 𝑅))
4541, 43, 44syl2anc 411 . . . . 5 ((𝜑𝑣 ∈ (ℤ𝐶)) → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅𝑣 ∈ dom ran 𝑅))
4640, 45mpd 13 . . . 4 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑣 ∈ dom ran 𝑅)
4746ex 115 . . 3 (𝜑 → (𝑣 ∈ (ℤ𝐶) → 𝑣 ∈ dom ran 𝑅))
4847ssrdv 3186 . 2 (𝜑 → (ℤ𝐶) ⊆ dom ran 𝑅)
4912, 48eqssd 3197 1 (𝜑 → dom ran 𝑅 = (ℤ𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wss 3154  cop 3622  cmpt 4091  ωcom 4623   × cxp 4658  ccnv 4659  dom cdm 4660  ran crn 4661  Fun wfun 5249  wf 5251  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  cmpo 5921  1st c1st 6193  2nd c2nd 6194  freccfrec 6445  1c1 7875   + caddc 7877  cz 9320  cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596
This theorem is referenced by:  frecuzrdgdom  10492
  Copyright terms: Public domain W3C validator