Step | Hyp | Ref
| Expression |
1 | | frecuzrdgrclt.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℤ) |
2 | | frecuzrdgrclt.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
3 | | frecuzrdgrclt.t |
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ 𝑇) |
4 | | frecuzrdgrclt.f |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
5 | | frecuzrdgrclt.r |
. . . . . 6
⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) |
6 | 1, 2, 3, 4, 5 | frecuzrdgrclt 10296 |
. . . . 5
⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) |
7 | | frn 5325 |
. . . . 5
⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ≥‘𝐶) × 𝑆)) |
8 | 6, 7 | syl 14 |
. . . 4
⊢ (𝜑 → ran 𝑅 ⊆
((ℤ≥‘𝐶) × 𝑆)) |
9 | | dmss 4782 |
. . . 4
⊢ (ran
𝑅 ⊆
((ℤ≥‘𝐶) × 𝑆) → dom ran 𝑅 ⊆ dom
((ℤ≥‘𝐶) × 𝑆)) |
10 | 8, 9 | syl 14 |
. . 3
⊢ (𝜑 → dom ran 𝑅 ⊆ dom
((ℤ≥‘𝐶) × 𝑆)) |
11 | | dmxpss 5013 |
. . 3
⊢ dom
((ℤ≥‘𝐶) × 𝑆) ⊆
(ℤ≥‘𝐶) |
12 | 10, 11 | sstrdi 3140 |
. 2
⊢ (𝜑 → dom ran 𝑅 ⊆ (ℤ≥‘𝐶)) |
13 | 8 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → ran 𝑅 ⊆
((ℤ≥‘𝐶) × 𝑆)) |
14 | | ffun 5319 |
. . . . . . . . . . . 12
⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → Fun 𝑅) |
15 | 6, 14 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝑅) |
16 | 15 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → Fun 𝑅) |
17 | | frecuzrdgdomlem.g |
. . . . . . . . . . . . 13
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
18 | 1, 17 | frec2uzf1od 10287 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |
19 | | f1ocnvdm 5726 |
. . . . . . . . . . . 12
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝑣) ∈ ω) |
20 | 18, 19 | sylan 281 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝑣) ∈ ω) |
21 | | fdm 5322 |
. . . . . . . . . . . . 13
⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → dom 𝑅 = ω) |
22 | 6, 21 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝑅 = ω) |
23 | 22 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → dom 𝑅 = ω) |
24 | 20, 23 | eleqtrrd 2237 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝑣) ∈ dom 𝑅) |
25 | | fvelrn 5595 |
. . . . . . . . . 10
⊢ ((Fun
𝑅 ∧ (◡𝐺‘𝑣) ∈ dom 𝑅) → (𝑅‘(◡𝐺‘𝑣)) ∈ ran 𝑅) |
26 | 16, 24, 25 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝑣)) ∈ ran 𝑅) |
27 | 13, 26 | sseldd 3129 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆)) |
28 | | 1st2nd2 6117 |
. . . . . . . 8
⊢ ((𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆) → (𝑅‘(◡𝐺‘𝑣)) = 〈(1st ‘(𝑅‘(◡𝐺‘𝑣))), (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉) |
29 | 27, 28 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝑣)) = 〈(1st ‘(𝑅‘(◡𝐺‘𝑣))), (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉) |
30 | 1 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝐶 ∈ ℤ) |
31 | 2 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝐴 ∈ 𝑆) |
32 | 3 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝑆 ⊆ 𝑇) |
33 | 4 | adantlr 469 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
34 | 30, 31, 32, 33, 5, 20, 17 | frecuzrdgg 10297 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (1st
‘(𝑅‘(◡𝐺‘𝑣))) = (𝐺‘(◡𝐺‘𝑣))) |
35 | | f1ocnvfv2 5723 |
. . . . . . . . . 10
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝑣)) = 𝑣) |
36 | 18, 35 | sylan 281 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝑣)) = 𝑣) |
37 | 34, 36 | eqtrd 2190 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (1st
‘(𝑅‘(◡𝐺‘𝑣))) = 𝑣) |
38 | 37 | opeq1d 3747 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 〈(1st
‘(𝑅‘(◡𝐺‘𝑣))), (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 = 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉) |
39 | 29, 38 | eqtrd 2190 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝑣)) = 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉) |
40 | 39, 26 | eqeltrrd 2235 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ ran 𝑅) |
41 | | simpr 109 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝑣 ∈ (ℤ≥‘𝐶)) |
42 | | xp2nd 6108 |
. . . . . . 7
⊢ ((𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆) → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) |
43 | 27, 42 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) |
44 | | opeldmg 4788 |
. . . . . 6
⊢ ((𝑣 ∈
(ℤ≥‘𝐶) ∧ (2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) → (〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ ran 𝑅 → 𝑣 ∈ dom ran 𝑅)) |
45 | 41, 43, 44 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ ran 𝑅 → 𝑣 ∈ dom ran 𝑅)) |
46 | 40, 45 | mpd 13 |
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝑣 ∈ dom ran 𝑅) |
47 | 46 | ex 114 |
. . 3
⊢ (𝜑 → (𝑣 ∈ (ℤ≥‘𝐶) → 𝑣 ∈ dom ran 𝑅)) |
48 | 47 | ssrdv 3134 |
. 2
⊢ (𝜑 →
(ℤ≥‘𝐶) ⊆ dom ran 𝑅) |
49 | 12, 48 | eqssd 3145 |
1
⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) |