| Step | Hyp | Ref
 | Expression | 
| 1 |   | frecuzrdgrclt.c | 
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℤ) | 
| 2 |   | frecuzrdgrclt.a | 
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑆) | 
| 3 |   | frecuzrdgrclt.t | 
. . . . . 6
⊢ (𝜑 → 𝑆 ⊆ 𝑇) | 
| 4 |   | frecuzrdgrclt.f | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | 
| 5 |   | frecuzrdgrclt.r | 
. . . . . 6
⊢ 𝑅 = frec((𝑥 ∈ (ℤ≥‘𝐶), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) | 
| 6 | 1, 2, 3, 4, 5 | frecuzrdgrclt 10507 | 
. . . . 5
⊢ (𝜑 → 𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆)) | 
| 7 |   | frn 5416 | 
. . . . 5
⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → ran 𝑅 ⊆ ((ℤ≥‘𝐶) × 𝑆)) | 
| 8 | 6, 7 | syl 14 | 
. . . 4
⊢ (𝜑 → ran 𝑅 ⊆
((ℤ≥‘𝐶) × 𝑆)) | 
| 9 |   | dmss 4865 | 
. . . 4
⊢ (ran
𝑅 ⊆
((ℤ≥‘𝐶) × 𝑆) → dom ran 𝑅 ⊆ dom
((ℤ≥‘𝐶) × 𝑆)) | 
| 10 | 8, 9 | syl 14 | 
. . 3
⊢ (𝜑 → dom ran 𝑅 ⊆ dom
((ℤ≥‘𝐶) × 𝑆)) | 
| 11 |   | dmxpss 5100 | 
. . 3
⊢ dom
((ℤ≥‘𝐶) × 𝑆) ⊆
(ℤ≥‘𝐶) | 
| 12 | 10, 11 | sstrdi 3195 | 
. 2
⊢ (𝜑 → dom ran 𝑅 ⊆ (ℤ≥‘𝐶)) | 
| 13 | 8 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → ran 𝑅 ⊆
((ℤ≥‘𝐶) × 𝑆)) | 
| 14 |   | ffun 5410 | 
. . . . . . . . . . . 12
⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → Fun 𝑅) | 
| 15 | 6, 14 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝑅) | 
| 16 | 15 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → Fun 𝑅) | 
| 17 |   | frecuzrdgdomlem.g | 
. . . . . . . . . . . . 13
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | 
| 18 | 1, 17 | frec2uzf1od 10498 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) | 
| 19 |   | f1ocnvdm 5828 | 
. . . . . . . . . . . 12
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝑣) ∈ ω) | 
| 20 | 18, 19 | sylan 283 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝑣) ∈ ω) | 
| 21 |   | fdm 5413 | 
. . . . . . . . . . . . 13
⊢ (𝑅:ω⟶((ℤ≥‘𝐶) × 𝑆) → dom 𝑅 = ω) | 
| 22 | 6, 21 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → dom 𝑅 = ω) | 
| 23 | 22 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → dom 𝑅 = ω) | 
| 24 | 20, 23 | eleqtrrd 2276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝑣) ∈ dom 𝑅) | 
| 25 |   | fvelrn 5693 | 
. . . . . . . . . 10
⊢ ((Fun
𝑅 ∧ (◡𝐺‘𝑣) ∈ dom 𝑅) → (𝑅‘(◡𝐺‘𝑣)) ∈ ran 𝑅) | 
| 26 | 16, 24, 25 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝑣)) ∈ ran 𝑅) | 
| 27 | 13, 26 | sseldd 3184 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆)) | 
| 28 |   | 1st2nd2 6233 | 
. . . . . . . 8
⊢ ((𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆) → (𝑅‘(◡𝐺‘𝑣)) = 〈(1st ‘(𝑅‘(◡𝐺‘𝑣))), (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉) | 
| 29 | 27, 28 | syl 14 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝑣)) = 〈(1st ‘(𝑅‘(◡𝐺‘𝑣))), (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉) | 
| 30 | 1 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝐶 ∈ ℤ) | 
| 31 | 2 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝐴 ∈ 𝑆) | 
| 32 | 3 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝑆 ⊆ 𝑇) | 
| 33 | 4 | adantlr 477 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) ∧ (𝑥 ∈ (ℤ≥‘𝐶) ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | 
| 34 | 30, 31, 32, 33, 5, 20, 17 | frecuzrdgg 10508 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (1st
‘(𝑅‘(◡𝐺‘𝑣))) = (𝐺‘(◡𝐺‘𝑣))) | 
| 35 |   | f1ocnvfv2 5825 | 
. . . . . . . . . 10
⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝑣)) = 𝑣) | 
| 36 | 18, 35 | sylan 283 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝑣)) = 𝑣) | 
| 37 | 34, 36 | eqtrd 2229 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (1st
‘(𝑅‘(◡𝐺‘𝑣))) = 𝑣) | 
| 38 | 37 | opeq1d 3814 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 〈(1st
‘(𝑅‘(◡𝐺‘𝑣))), (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 = 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉) | 
| 39 | 29, 38 | eqtrd 2229 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (𝑅‘(◡𝐺‘𝑣)) = 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉) | 
| 40 | 39, 26 | eqeltrrd 2274 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ ran 𝑅) | 
| 41 |   | simpr 110 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝑣 ∈ (ℤ≥‘𝐶)) | 
| 42 |   | xp2nd 6224 | 
. . . . . . 7
⊢ ((𝑅‘(◡𝐺‘𝑣)) ∈
((ℤ≥‘𝐶) × 𝑆) → (2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) | 
| 43 | 27, 42 | syl 14 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (2nd
‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) | 
| 44 |   | opeldmg 4871 | 
. . . . . 6
⊢ ((𝑣 ∈
(ℤ≥‘𝐶) ∧ (2nd ‘(𝑅‘(◡𝐺‘𝑣))) ∈ 𝑆) → (〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ ran 𝑅 → 𝑣 ∈ dom ran 𝑅)) | 
| 45 | 41, 43, 44 | syl2anc 411 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → (〈𝑣, (2nd ‘(𝑅‘(◡𝐺‘𝑣)))〉 ∈ ran 𝑅 → 𝑣 ∈ dom ran 𝑅)) | 
| 46 | 40, 45 | mpd 13 | 
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ (ℤ≥‘𝐶)) → 𝑣 ∈ dom ran 𝑅) | 
| 47 | 46 | ex 115 | 
. . 3
⊢ (𝜑 → (𝑣 ∈ (ℤ≥‘𝐶) → 𝑣 ∈ dom ran 𝑅)) | 
| 48 | 47 | ssrdv 3189 | 
. 2
⊢ (𝜑 →
(ℤ≥‘𝐶) ⊆ dom ran 𝑅) | 
| 49 | 12, 48 | eqssd 3200 | 
1
⊢ (𝜑 → dom ran 𝑅 = (ℤ≥‘𝐶)) |