| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsumsplitsn | GIF version | ||
| Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fsumsplitsn.ph | ⊢ Ⅎ𝑘𝜑 |
| fsumsplitsn.kd | ⊢ Ⅎ𝑘𝐷 |
| fsumsplitsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsumsplitsn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fsumsplitsn.ba | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
| fsumsplitsn.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| fsumsplitsn.d | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) |
| fsumsplitsn.dcn | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| Ref | Expression |
|---|---|
| fsumsplitsn | ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumsplitsn.ph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | fsumsplitsn.ba | . . . 4 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) | |
| 3 | disjsn 3694 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
| 4 | 2, 3 | sylibr 134 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝐵}) = ∅) |
| 5 | eqidd 2205 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵})) | |
| 6 | fsumsplitsn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 7 | fsumsplitsn.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 8 | unsnfi 6998 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin) | |
| 9 | 6, 7, 2, 8 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin) |
| 10 | fsumsplitsn.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
| 11 | 10 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 12 | fsumsplitsn.d | . . . . . . 7 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) | |
| 13 | 12 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐷) |
| 14 | fsumsplitsn.dcn | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 15 | 14 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ) |
| 16 | 13, 15 | eqeltrd 2281 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 ∈ ℂ) |
| 17 | 16 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 = 𝐵) → 𝐶 ∈ ℂ) |
| 18 | elun 3313 | . . . . . 6 ⊢ (𝑘 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵})) | |
| 19 | elsni 3650 | . . . . . . 7 ⊢ (𝑘 ∈ {𝐵} → 𝑘 = 𝐵) | |
| 20 | 19 | orim2i 762 | . . . . . 6 ⊢ ((𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵}) → (𝑘 ∈ 𝐴 ∨ 𝑘 = 𝐵)) |
| 21 | 18, 20 | sylbi 121 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝐵}) → (𝑘 ∈ 𝐴 ∨ 𝑘 = 𝐵)) |
| 22 | 21 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → (𝑘 ∈ 𝐴 ∨ 𝑘 = 𝐵)) |
| 23 | 11, 17, 22 | mpjaodan 799 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ) |
| 24 | 1, 4, 5, 9, 23 | fsumsplitf 11638 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ {𝐵}𝐶)) |
| 25 | fsumsplitsn.kd | . . . . 5 ⊢ Ⅎ𝑘𝐷 | |
| 26 | 25, 12 | sumsnf 11639 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝐶 = 𝐷) |
| 27 | 7, 14, 26 | syl2anc 411 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐷) |
| 28 | 27 | oveq2d 5950 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (Σ𝑘 ∈ 𝐴 𝐶 + 𝐷)) |
| 29 | 24, 28 | eqtrd 2237 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1372 Ⅎwnf 1482 ∈ wcel 2175 Ⅎwnfc 2334 ∪ cun 3163 ∩ cin 3164 ∅c0 3459 {csn 3632 (class class class)co 5934 Fincfn 6817 ℂcc 7905 + caddc 7910 Σcsu 11583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-isom 5277 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-irdg 6446 df-frec 6467 df-1o 6492 df-oadd 6496 df-er 6610 df-en 6818 df-dom 6819 df-fin 6820 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-rp 9758 df-fz 10113 df-fzo 10247 df-seqfrec 10574 df-exp 10665 df-ihash 10902 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 df-clim 11509 df-sumdc 11584 |
| This theorem is referenced by: fsumrelem 11701 gsumfzfsumlemm 14267 trilpolemeq1 15843 nconstwlpolemgt0 15867 |
| Copyright terms: Public domain | W3C validator |