ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplitsn GIF version

Theorem fsumsplitsn 11663
Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumsplitsn.ph 𝑘𝜑
fsumsplitsn.kd 𝑘𝐷
fsumsplitsn.a (𝜑𝐴 ∈ Fin)
fsumsplitsn.b (𝜑𝐵𝑉)
fsumsplitsn.ba (𝜑 → ¬ 𝐵𝐴)
fsumsplitsn.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fsumsplitsn.d (𝑘 = 𝐵𝐶 = 𝐷)
fsumsplitsn.dcn (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
fsumsplitsn (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘𝐴 𝐶 + 𝐷))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐷(𝑘)

Proof of Theorem fsumsplitsn
StepHypRef Expression
1 fsumsplitsn.ph . . 3 𝑘𝜑
2 fsumsplitsn.ba . . . 4 (𝜑 → ¬ 𝐵𝐴)
3 disjsn 3694 . . . 4 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
42, 3sylibr 134 . . 3 (𝜑 → (𝐴 ∩ {𝐵}) = ∅)
5 eqidd 2205 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵}))
6 fsumsplitsn.a . . . 4 (𝜑𝐴 ∈ Fin)
7 fsumsplitsn.b . . . 4 (𝜑𝐵𝑉)
8 unsnfi 7015 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ¬ 𝐵𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin)
96, 7, 2, 8syl3anc 1249 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin)
10 fsumsplitsn.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1110adantlr 477 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
12 fsumsplitsn.d . . . . . . 7 (𝑘 = 𝐵𝐶 = 𝐷)
1312adantl 277 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐷)
14 fsumsplitsn.dcn . . . . . . 7 (𝜑𝐷 ∈ ℂ)
1514adantr 276 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐷 ∈ ℂ)
1613, 15eqeltrd 2281 . . . . 5 ((𝜑𝑘 = 𝐵) → 𝐶 ∈ ℂ)
1716adantlr 477 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 = 𝐵) → 𝐶 ∈ ℂ)
18 elun 3313 . . . . . 6 (𝑘 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑘𝐴𝑘 ∈ {𝐵}))
19 elsni 3650 . . . . . . 7 (𝑘 ∈ {𝐵} → 𝑘 = 𝐵)
2019orim2i 762 . . . . . 6 ((𝑘𝐴𝑘 ∈ {𝐵}) → (𝑘𝐴𝑘 = 𝐵))
2118, 20sylbi 121 . . . . 5 (𝑘 ∈ (𝐴 ∪ {𝐵}) → (𝑘𝐴𝑘 = 𝐵))
2221adantl 277 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) → (𝑘𝐴𝑘 = 𝐵))
2311, 17, 22mpjaodan 799 . . 3 ((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ)
241, 4, 5, 9, 23fsumsplitf 11661 . 2 (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘 ∈ {𝐵}𝐶))
25 fsumsplitsn.kd . . . . 5 𝑘𝐷
2625, 12sumsnf 11662 . . . 4 ((𝐵𝑉𝐷 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝐶 = 𝐷)
277, 14, 26syl2anc 411 . . 3 (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐷)
2827oveq2d 5959 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (Σ𝑘𝐴 𝐶 + 𝐷))
2924, 28eqtrd 2237 1 (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘𝐴 𝐶 + 𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1372  wnf 1482  wcel 2175  wnfc 2334  cun 3163  cin 3164  c0 3459  {csn 3632  (class class class)co 5943  Fincfn 6826  cc 7922   + caddc 7927  Σcsu 11606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532  df-sumdc 11607
This theorem is referenced by:  fsumrelem  11724  gsumfzfsumlemm  14291  trilpolemeq1  15912  nconstwlpolemgt0  15936
  Copyright terms: Public domain W3C validator