![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fsumsplitsn | GIF version |
Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fsumsplitsn.ph | ⊢ Ⅎ𝑘𝜑 |
fsumsplitsn.kd | ⊢ Ⅎ𝑘𝐷 |
fsumsplitsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumsplitsn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fsumsplitsn.ba | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
fsumsplitsn.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
fsumsplitsn.d | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) |
fsumsplitsn.dcn | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
fsumsplitsn | ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumsplitsn.ph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | fsumsplitsn.ba | . . . 4 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) | |
3 | disjsn 3656 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
4 | 2, 3 | sylibr 134 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝐵}) = ∅) |
5 | eqidd 2178 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵})) | |
6 | fsumsplitsn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | fsumsplitsn.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
8 | unsnfi 6920 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ 𝐴) → (𝐴 ∪ {𝐵}) ∈ Fin) | |
9 | 6, 7, 2, 8 | syl3anc 1238 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin) |
10 | fsumsplitsn.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
11 | 10 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
12 | fsumsplitsn.d | . . . . . . 7 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) | |
13 | 12 | adantl 277 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐷) |
14 | fsumsplitsn.dcn | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
15 | 14 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ) |
16 | 13, 15 | eqeltrd 2254 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 ∈ ℂ) |
17 | 16 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 = 𝐵) → 𝐶 ∈ ℂ) |
18 | elun 3278 | . . . . . 6 ⊢ (𝑘 ∈ (𝐴 ∪ {𝐵}) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵})) | |
19 | elsni 3612 | . . . . . . 7 ⊢ (𝑘 ∈ {𝐵} → 𝑘 = 𝐵) | |
20 | 19 | orim2i 761 | . . . . . 6 ⊢ ((𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝐵}) → (𝑘 ∈ 𝐴 ∨ 𝑘 = 𝐵)) |
21 | 18, 20 | sylbi 121 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝐵}) → (𝑘 ∈ 𝐴 ∨ 𝑘 = 𝐵)) |
22 | 21 | adantl 277 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → (𝑘 ∈ 𝐴 ∨ 𝑘 = 𝐵)) |
23 | 11, 17, 22 | mpjaodan 798 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ) |
24 | 1, 4, 5, 9, 23 | fsumsplitf 11418 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ {𝐵}𝐶)) |
25 | fsumsplitsn.kd | . . . . 5 ⊢ Ⅎ𝑘𝐷 | |
26 | 25, 12 | sumsnf 11419 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝐶 = 𝐷) |
27 | 7, 14, 26 | syl2anc 411 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐷) |
28 | 27 | oveq2d 5893 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (Σ𝑘 ∈ 𝐴 𝐶 + 𝐷)) |
29 | 24, 28 | eqtrd 2210 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 = wceq 1353 Ⅎwnf 1460 ∈ wcel 2148 Ⅎwnfc 2306 ∪ cun 3129 ∩ cin 3130 ∅c0 3424 {csn 3594 (class class class)co 5877 Fincfn 6742 ℂcc 7811 + caddc 7816 Σcsu 11363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-en 6743 df-dom 6744 df-fin 6745 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-fz 10011 df-fzo 10145 df-seqfrec 10448 df-exp 10522 df-ihash 10758 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-clim 11289 df-sumdc 11364 |
This theorem is referenced by: fsumrelem 11481 trilpolemeq1 14873 nconstwlpolemgt0 14897 |
Copyright terms: Public domain | W3C validator |