| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfisollem0 | GIF version | ||
| Description: Lemma for nninfisol 7217. The case where 𝑁 is zero. (Contributed by Jim Kingdon, 13-Sep-2024.) |
| Ref | Expression |
|---|---|
| nninfisol.x | ⊢ (𝜑 → 𝑋 ∈ ℕ∞) |
| nninfisol.0 | ⊢ (𝜑 → (𝑋‘𝑁) = ∅) |
| nninfisol.n | ⊢ (𝜑 → 𝑁 ∈ ω) |
| nninfisollem0.0 | ⊢ (𝜑 → 𝑁 = ∅) |
| Ref | Expression |
|---|---|
| nninfisollem0 | ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfisol.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℕ∞) | |
| 2 | nninfisol.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ω) | |
| 3 | ral0 3561 | . . . . . 6 ⊢ ∀𝑗 ∈ ∅ (𝑋‘𝑗) = 1o | |
| 4 | nninfisollem0.0 | . . . . . . 7 ⊢ (𝜑 → 𝑁 = ∅) | |
| 5 | 4 | raleqdv 2707 | . . . . . 6 ⊢ (𝜑 → (∀𝑗 ∈ 𝑁 (𝑋‘𝑗) = 1o ↔ ∀𝑗 ∈ ∅ (𝑋‘𝑗) = 1o)) |
| 6 | 3, 5 | mpbiri 168 | . . . . 5 ⊢ (𝜑 → ∀𝑗 ∈ 𝑁 (𝑋‘𝑗) = 1o) |
| 7 | nninfisol.0 | . . . . 5 ⊢ (𝜑 → (𝑋‘𝑁) = ∅) | |
| 8 | 1, 2, 6, 7 | nnnninfeq 7212 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) |
| 9 | 8 | eqcomd 2210 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
| 10 | 9 | orcd 734 | . 2 ⊢ (𝜑 → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋)) |
| 11 | df-dc 836 | . 2 ⊢ (DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ↔ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋)) | |
| 12 | 10, 11 | sylibr 134 | 1 ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ∅c0 3459 ifcif 3570 ↦ cmpt 4104 ωcom 4636 ‘cfv 5268 1oc1o 6485 ℕ∞xnninf 7203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1o 6492 df-2o 6493 df-map 6727 df-nninf 7204 |
| This theorem is referenced by: nninfisol 7217 |
| Copyright terms: Public domain | W3C validator |