| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfisollem0 | GIF version | ||
| Description: Lemma for nninfisol 7208. The case where 𝑁 is zero. (Contributed by Jim Kingdon, 13-Sep-2024.) |
| Ref | Expression |
|---|---|
| nninfisol.x | ⊢ (𝜑 → 𝑋 ∈ ℕ∞) |
| nninfisol.0 | ⊢ (𝜑 → (𝑋‘𝑁) = ∅) |
| nninfisol.n | ⊢ (𝜑 → 𝑁 ∈ ω) |
| nninfisollem0.0 | ⊢ (𝜑 → 𝑁 = ∅) |
| Ref | Expression |
|---|---|
| nninfisollem0 | ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfisol.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℕ∞) | |
| 2 | nninfisol.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ω) | |
| 3 | ral0 3553 | . . . . . 6 ⊢ ∀𝑗 ∈ ∅ (𝑋‘𝑗) = 1o | |
| 4 | nninfisollem0.0 | . . . . . . 7 ⊢ (𝜑 → 𝑁 = ∅) | |
| 5 | 4 | raleqdv 2699 | . . . . . 6 ⊢ (𝜑 → (∀𝑗 ∈ 𝑁 (𝑋‘𝑗) = 1o ↔ ∀𝑗 ∈ ∅ (𝑋‘𝑗) = 1o)) |
| 6 | 3, 5 | mpbiri 168 | . . . . 5 ⊢ (𝜑 → ∀𝑗 ∈ 𝑁 (𝑋‘𝑗) = 1o) |
| 7 | nninfisol.0 | . . . . 5 ⊢ (𝜑 → (𝑋‘𝑁) = ∅) | |
| 8 | 1, 2, 6, 7 | nnnninfeq 7203 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) |
| 9 | 8 | eqcomd 2202 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
| 10 | 9 | orcd 734 | . 2 ⊢ (𝜑 → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋)) |
| 11 | df-dc 836 | . 2 ⊢ (DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ↔ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋)) | |
| 12 | 10, 11 | sylibr 134 | 1 ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∅c0 3451 ifcif 3562 ↦ cmpt 4095 ωcom 4627 ‘cfv 5259 1oc1o 6476 ℕ∞xnninf 7194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1o 6483 df-2o 6484 df-map 6718 df-nninf 7195 |
| This theorem is referenced by: nninfisol 7208 |
| Copyright terms: Public domain | W3C validator |