| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nninfisollem0 | GIF version | ||
| Description: Lemma for nninfisol 7199. The case where 𝑁 is zero. (Contributed by Jim Kingdon, 13-Sep-2024.) | 
| Ref | Expression | 
|---|---|
| nninfisol.x | ⊢ (𝜑 → 𝑋 ∈ ℕ∞) | 
| nninfisol.0 | ⊢ (𝜑 → (𝑋‘𝑁) = ∅) | 
| nninfisol.n | ⊢ (𝜑 → 𝑁 ∈ ω) | 
| nninfisollem0.0 | ⊢ (𝜑 → 𝑁 = ∅) | 
| Ref | Expression | 
|---|---|
| nninfisollem0 | ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nninfisol.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℕ∞) | |
| 2 | nninfisol.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ω) | |
| 3 | ral0 3552 | . . . . . 6 ⊢ ∀𝑗 ∈ ∅ (𝑋‘𝑗) = 1o | |
| 4 | nninfisollem0.0 | . . . . . . 7 ⊢ (𝜑 → 𝑁 = ∅) | |
| 5 | 4 | raleqdv 2699 | . . . . . 6 ⊢ (𝜑 → (∀𝑗 ∈ 𝑁 (𝑋‘𝑗) = 1o ↔ ∀𝑗 ∈ ∅ (𝑋‘𝑗) = 1o)) | 
| 6 | 3, 5 | mpbiri 168 | . . . . 5 ⊢ (𝜑 → ∀𝑗 ∈ 𝑁 (𝑋‘𝑗) = 1o) | 
| 7 | nninfisol.0 | . . . . 5 ⊢ (𝜑 → (𝑋‘𝑁) = ∅) | |
| 8 | 1, 2, 6, 7 | nnnninfeq 7194 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) | 
| 9 | 8 | eqcomd 2202 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | 
| 10 | 9 | orcd 734 | . 2 ⊢ (𝜑 → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋)) | 
| 11 | df-dc 836 | . 2 ⊢ (DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ↔ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋)) | |
| 12 | 10, 11 | sylibr 134 | 1 ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∅c0 3450 ifcif 3561 ↦ cmpt 4094 ωcom 4626 ‘cfv 5258 1oc1o 6467 ℕ∞xnninf 7185 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1o 6474 df-2o 6475 df-map 6709 df-nninf 7186 | 
| This theorem is referenced by: nninfisol 7199 | 
| Copyright terms: Public domain | W3C validator |