Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nninfisollem0 | GIF version |
Description: Lemma for nninfisol 7121. The case where 𝑁 is zero. (Contributed by Jim Kingdon, 13-Sep-2024.) |
Ref | Expression |
---|---|
nninfisol.x | ⊢ (𝜑 → 𝑋 ∈ ℕ∞) |
nninfisol.0 | ⊢ (𝜑 → (𝑋‘𝑁) = ∅) |
nninfisol.n | ⊢ (𝜑 → 𝑁 ∈ ω) |
nninfisollem0.0 | ⊢ (𝜑 → 𝑁 = ∅) |
Ref | Expression |
---|---|
nninfisollem0 | ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfisol.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℕ∞) | |
2 | nninfisol.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ω) | |
3 | ral0 3522 | . . . . . 6 ⊢ ∀𝑗 ∈ ∅ (𝑋‘𝑗) = 1o | |
4 | nninfisollem0.0 | . . . . . . 7 ⊢ (𝜑 → 𝑁 = ∅) | |
5 | 4 | raleqdv 2676 | . . . . . 6 ⊢ (𝜑 → (∀𝑗 ∈ 𝑁 (𝑋‘𝑗) = 1o ↔ ∀𝑗 ∈ ∅ (𝑋‘𝑗) = 1o)) |
6 | 3, 5 | mpbiri 168 | . . . . 5 ⊢ (𝜑 → ∀𝑗 ∈ 𝑁 (𝑋‘𝑗) = 1o) |
7 | nninfisol.0 | . . . . 5 ⊢ (𝜑 → (𝑋‘𝑁) = ∅) | |
8 | 1, 2, 6, 7 | nnnninfeq 7116 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) |
9 | 8 | eqcomd 2181 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
10 | 9 | orcd 733 | . 2 ⊢ (𝜑 → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋)) |
11 | df-dc 835 | . 2 ⊢ (DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ↔ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋)) | |
12 | 10, 11 | sylibr 134 | 1 ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 708 DECID wdc 834 = wceq 1353 ∈ wcel 2146 ∀wral 2453 ∅c0 3420 ifcif 3532 ↦ cmpt 4059 ωcom 4583 ‘cfv 5208 1oc1o 6400 ℕ∞xnninf 7108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1o 6407 df-2o 6408 df-map 6640 df-nninf 7109 |
This theorem is referenced by: nninfisol 7121 |
Copyright terms: Public domain | W3C validator |