Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nninfisollem0 | GIF version |
Description: Lemma for nninfisol 7105. The case where 𝑁 is zero. (Contributed by Jim Kingdon, 13-Sep-2024.) |
Ref | Expression |
---|---|
nninfisol.x | ⊢ (𝜑 → 𝑋 ∈ ℕ∞) |
nninfisol.0 | ⊢ (𝜑 → (𝑋‘𝑁) = ∅) |
nninfisol.n | ⊢ (𝜑 → 𝑁 ∈ ω) |
nninfisollem0.0 | ⊢ (𝜑 → 𝑁 = ∅) |
Ref | Expression |
---|---|
nninfisollem0 | ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfisol.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℕ∞) | |
2 | nninfisol.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ω) | |
3 | ral0 3515 | . . . . . 6 ⊢ ∀𝑗 ∈ ∅ (𝑋‘𝑗) = 1o | |
4 | nninfisollem0.0 | . . . . . . 7 ⊢ (𝜑 → 𝑁 = ∅) | |
5 | 4 | raleqdv 2671 | . . . . . 6 ⊢ (𝜑 → (∀𝑗 ∈ 𝑁 (𝑋‘𝑗) = 1o ↔ ∀𝑗 ∈ ∅ (𝑋‘𝑗) = 1o)) |
6 | 3, 5 | mpbiri 167 | . . . . 5 ⊢ (𝜑 → ∀𝑗 ∈ 𝑁 (𝑋‘𝑗) = 1o) |
7 | nninfisol.0 | . . . . 5 ⊢ (𝜑 → (𝑋‘𝑁) = ∅) | |
8 | 1, 2, 6, 7 | nnnninfeq 7100 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))) |
9 | 8 | eqcomd 2176 | . . 3 ⊢ (𝜑 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
10 | 9 | orcd 728 | . 2 ⊢ (𝜑 → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋)) |
11 | df-dc 830 | . 2 ⊢ (DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ↔ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋)) | |
12 | 10, 11 | sylibr 133 | 1 ⊢ (𝜑 → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 703 DECID wdc 829 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∅c0 3414 ifcif 3525 ↦ cmpt 4048 ωcom 4572 ‘cfv 5196 1oc1o 6385 ℕ∞xnninf 7092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1o 6392 df-2o 6393 df-map 6624 df-nninf 7093 |
This theorem is referenced by: nninfisol 7105 |
Copyright terms: Public domain | W3C validator |