| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > absval | GIF version | ||
| Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| absval | ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rsqrt 11309 | . . . 4 ⊢ √ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦))) | |
| 2 | reex 8059 | . . . . 5 ⊢ ℝ ∈ V | |
| 3 | 2 | mptex 5810 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦))) ∈ V |
| 4 | 1, 3 | eqeltri 2278 | . . 3 ⊢ √ ∈ V |
| 5 | id 19 | . . . 4 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 6 | cjcl 11159 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
| 7 | 5, 6 | mulcld 8093 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℂ) |
| 8 | fvexg 5595 | . . 3 ⊢ ((√ ∈ V ∧ (𝐴 · (∗‘𝐴)) ∈ ℂ) → (√‘(𝐴 · (∗‘𝐴))) ∈ V) | |
| 9 | 4, 7, 8 | sylancr 414 | . 2 ⊢ (𝐴 ∈ ℂ → (√‘(𝐴 · (∗‘𝐴))) ∈ V) |
| 10 | fveq2 5576 | . . . . 5 ⊢ (𝑥 = 𝐴 → (∗‘𝑥) = (∗‘𝐴)) | |
| 11 | oveq12 5953 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ (∗‘𝑥) = (∗‘𝐴)) → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴))) | |
| 12 | 10, 11 | mpdan 421 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴))) |
| 13 | 12 | fveq2d 5580 | . . 3 ⊢ (𝑥 = 𝐴 → (√‘(𝑥 · (∗‘𝑥))) = (√‘(𝐴 · (∗‘𝐴)))) |
| 14 | df-abs 11310 | . . 3 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
| 15 | 13, 14 | fvmptg 5655 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (√‘(𝐴 · (∗‘𝐴))) ∈ V) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
| 16 | 9, 15 | mpdan 421 | 1 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 Vcvv 2772 class class class wbr 4044 ↦ cmpt 4105 ‘cfv 5271 ℩crio 5898 (class class class)co 5944 ℂcc 7923 ℝcr 7924 0cc0 7925 · cmul 7930 ≤ cle 8108 2c2 9087 ↑cexp 10683 ∗ccj 11150 √csqrt 11307 abscabs 11308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-sub 8245 df-neg 8246 df-reap 8648 df-cj 11153 df-rsqrt 11309 df-abs 11310 |
| This theorem is referenced by: absneg 11361 abscl 11362 abscj 11363 absvalsq 11364 absval2 11368 abs0 11369 absi 11370 absge0 11371 absrpclap 11372 absmul 11380 absid 11382 absre 11388 absf 11421 |
| Copyright terms: Public domain | W3C validator |