| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > absval | GIF version | ||
| Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| absval | ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rsqrt 11165 | . . . 4 ⊢ √ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦))) | |
| 2 | reex 8015 | . . . . 5 ⊢ ℝ ∈ V | |
| 3 | 2 | mptex 5789 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦))) ∈ V |
| 4 | 1, 3 | eqeltri 2269 | . . 3 ⊢ √ ∈ V |
| 5 | id 19 | . . . 4 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
| 6 | cjcl 11015 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
| 7 | 5, 6 | mulcld 8049 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℂ) |
| 8 | fvexg 5578 | . . 3 ⊢ ((√ ∈ V ∧ (𝐴 · (∗‘𝐴)) ∈ ℂ) → (√‘(𝐴 · (∗‘𝐴))) ∈ V) | |
| 9 | 4, 7, 8 | sylancr 414 | . 2 ⊢ (𝐴 ∈ ℂ → (√‘(𝐴 · (∗‘𝐴))) ∈ V) |
| 10 | fveq2 5559 | . . . . 5 ⊢ (𝑥 = 𝐴 → (∗‘𝑥) = (∗‘𝐴)) | |
| 11 | oveq12 5932 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ (∗‘𝑥) = (∗‘𝐴)) → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴))) | |
| 12 | 10, 11 | mpdan 421 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴))) |
| 13 | 12 | fveq2d 5563 | . . 3 ⊢ (𝑥 = 𝐴 → (√‘(𝑥 · (∗‘𝑥))) = (√‘(𝐴 · (∗‘𝐴)))) |
| 14 | df-abs 11166 | . . 3 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
| 15 | 13, 14 | fvmptg 5638 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (√‘(𝐴 · (∗‘𝐴))) ∈ V) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
| 16 | 9, 15 | mpdan 421 | 1 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 class class class wbr 4034 ↦ cmpt 4095 ‘cfv 5259 ℩crio 5877 (class class class)co 5923 ℂcc 7879 ℝcr 7880 0cc0 7881 · cmul 7886 ≤ cle 8064 2c2 9043 ↑cexp 10632 ∗ccj 11006 √csqrt 11163 abscabs 11164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8065 df-mnf 8066 df-ltxr 8068 df-sub 8201 df-neg 8202 df-reap 8604 df-cj 11009 df-rsqrt 11165 df-abs 11166 |
| This theorem is referenced by: absneg 11217 abscl 11218 abscj 11219 absvalsq 11220 absval2 11224 abs0 11225 absi 11226 absge0 11227 absrpclap 11228 absmul 11236 absid 11238 absre 11244 absf 11277 |
| Copyright terms: Public domain | W3C validator |