Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > absval | GIF version |
Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
Ref | Expression |
---|---|
absval | ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rsqrt 10973 | . . . 4 ⊢ √ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦))) | |
2 | reex 7920 | . . . . 5 ⊢ ℝ ∈ V | |
3 | 2 | mptex 5734 | . . . 4 ⊢ (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦))) ∈ V |
4 | 1, 3 | eqeltri 2248 | . . 3 ⊢ √ ∈ V |
5 | id 19 | . . . 4 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
6 | cjcl 10823 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
7 | 5, 6 | mulcld 7952 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℂ) |
8 | fvexg 5526 | . . 3 ⊢ ((√ ∈ V ∧ (𝐴 · (∗‘𝐴)) ∈ ℂ) → (√‘(𝐴 · (∗‘𝐴))) ∈ V) | |
9 | 4, 7, 8 | sylancr 414 | . 2 ⊢ (𝐴 ∈ ℂ → (√‘(𝐴 · (∗‘𝐴))) ∈ V) |
10 | fveq2 5507 | . . . . 5 ⊢ (𝑥 = 𝐴 → (∗‘𝑥) = (∗‘𝐴)) | |
11 | oveq12 5874 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ (∗‘𝑥) = (∗‘𝐴)) → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴))) | |
12 | 10, 11 | mpdan 421 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴))) |
13 | 12 | fveq2d 5511 | . . 3 ⊢ (𝑥 = 𝐴 → (√‘(𝑥 · (∗‘𝑥))) = (√‘(𝐴 · (∗‘𝐴)))) |
14 | df-abs 10974 | . . 3 ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) | |
15 | 13, 14 | fvmptg 5584 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (√‘(𝐴 · (∗‘𝐴))) ∈ V) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
16 | 9, 15 | mpdan 421 | 1 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 Vcvv 2735 class class class wbr 3998 ↦ cmpt 4059 ‘cfv 5208 ℩crio 5820 (class class class)co 5865 ℂcc 7784 ℝcr 7785 0cc0 7786 · cmul 7791 ≤ cle 7967 2c2 8941 ↑cexp 10487 ∗ccj 10814 √csqrt 10971 abscabs 10972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-sub 8104 df-neg 8105 df-reap 8506 df-cj 10817 df-rsqrt 10973 df-abs 10974 |
This theorem is referenced by: absneg 11025 abscl 11026 abscj 11027 absvalsq 11028 absval2 11032 abs0 11033 absi 11034 absge0 11035 absrpclap 11036 absmul 11044 absid 11046 absre 11052 absf 11085 |
Copyright terms: Public domain | W3C validator |