ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absval GIF version

Theorem absval 11145
Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
absval (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))

Proof of Theorem absval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rsqrt 11142 . . . 4 √ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦)))
2 reex 8006 . . . . 5 ℝ ∈ V
32mptex 5784 . . . 4 (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦))) ∈ V
41, 3eqeltri 2266 . . 3 √ ∈ V
5 id 19 . . . 4 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
6 cjcl 10992 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
75, 6mulcld 8040 . . 3 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℂ)
8 fvexg 5573 . . 3 ((√ ∈ V ∧ (𝐴 · (∗‘𝐴)) ∈ ℂ) → (√‘(𝐴 · (∗‘𝐴))) ∈ V)
94, 7, 8sylancr 414 . 2 (𝐴 ∈ ℂ → (√‘(𝐴 · (∗‘𝐴))) ∈ V)
10 fveq2 5554 . . . . 5 (𝑥 = 𝐴 → (∗‘𝑥) = (∗‘𝐴))
11 oveq12 5927 . . . . 5 ((𝑥 = 𝐴 ∧ (∗‘𝑥) = (∗‘𝐴)) → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴)))
1210, 11mpdan 421 . . . 4 (𝑥 = 𝐴 → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴)))
1312fveq2d 5558 . . 3 (𝑥 = 𝐴 → (√‘(𝑥 · (∗‘𝑥))) = (√‘(𝐴 · (∗‘𝐴))))
14 df-abs 11143 . . 3 abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
1513, 14fvmptg 5633 . 2 ((𝐴 ∈ ℂ ∧ (√‘(𝐴 · (∗‘𝐴))) ∈ V) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
169, 15mpdan 421 1 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760   class class class wbr 4029  cmpt 4090  cfv 5254  crio 5872  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872   · cmul 7877  cle 8055  2c2 9033  cexp 10609  ccj 10983  csqrt 11140  abscabs 11141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-sub 8192  df-neg 8193  df-reap 8594  df-cj 10986  df-rsqrt 11142  df-abs 11143
This theorem is referenced by:  absneg  11194  abscl  11195  abscj  11196  absvalsq  11197  absval2  11201  abs0  11202  absi  11203  absge0  11204  absrpclap  11205  absmul  11213  absid  11215  absre  11221  absf  11254
  Copyright terms: Public domain W3C validator