| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resiexg | GIF version | ||
| Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.) |
| Ref | Expression |
|---|---|
| resiexg | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5006 | . . 3 ⊢ Rel ( I ↾ 𝐴) | |
| 2 | simpr 110 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 3 | eleq1 2270 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 4 | 3 | biimpa 296 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
| 5 | 2, 4 | jca 306 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
| 6 | vex 2779 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 7 | 6 | opelres 4983 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐴) ↔ (〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ 𝐴)) |
| 8 | df-br 4060 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
| 9 | 6 | ideq 4848 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 10 | 8, 9 | bitr3i 186 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ I ↔ 𝑥 = 𝑦) |
| 11 | 10 | anbi1i 458 | . . . . 5 ⊢ ((〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
| 12 | 7, 11 | bitri 184 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐴) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
| 13 | opelxp 4723 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) | |
| 14 | 5, 12, 13 | 3imtr4i 201 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐴) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐴)) |
| 15 | 1, 14 | relssi 4784 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
| 16 | xpexg 4807 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
| 17 | 16 | anidms 397 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
| 18 | ssexg 4199 | . 2 ⊢ ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V) | |
| 19 | 15, 17, 18 | sylancr 414 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 Vcvv 2776 ⊆ wss 3174 〈cop 3646 class class class wbr 4059 I cid 4353 × cxp 4691 ↾ cres 4695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-res 4705 |
| This theorem is referenced by: ordiso 7164 omct 7245 ctssexmid 7278 ssomct 12931 ndxarg 12970 subctctexmid 16139 |
| Copyright terms: Public domain | W3C validator |