![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resiexg | GIF version |
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.) |
Ref | Expression |
---|---|
resiexg | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4971 | . . 3 ⊢ Rel ( I ↾ 𝐴) | |
2 | simpr 110 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
3 | eleq1 2256 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
4 | 3 | biimpa 296 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
5 | 2, 4 | jca 306 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
6 | vex 2763 | . . . . . 6 ⊢ 𝑦 ∈ V | |
7 | 6 | opelres 4948 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐴) ↔ (〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ 𝐴)) |
8 | df-br 4031 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
9 | 6 | ideq 4815 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
10 | 8, 9 | bitr3i 186 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ I ↔ 𝑥 = 𝑦) |
11 | 10 | anbi1i 458 | . . . . 5 ⊢ ((〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
12 | 7, 11 | bitri 184 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐴) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
13 | opelxp 4690 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) | |
14 | 5, 12, 13 | 3imtr4i 201 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐴) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐴)) |
15 | 1, 14 | relssi 4751 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
16 | xpexg 4774 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
17 | 16 | anidms 397 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
18 | ssexg 4169 | . 2 ⊢ ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V) | |
19 | 15, 17, 18 | sylancr 414 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 〈cop 3622 class class class wbr 4030 I cid 4320 × cxp 4658 ↾ cres 4662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-res 4672 |
This theorem is referenced by: ordiso 7097 omct 7178 ctssexmid 7211 ssomct 12605 ndxarg 12644 subctctexmid 15561 |
Copyright terms: Public domain | W3C validator |