ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiexg GIF version

Theorem resiexg 4872
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
resiexg (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)

Proof of Theorem resiexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4855 . . 3 Rel ( I ↾ 𝐴)
2 simpr 109 . . . . 5 ((𝑥 = 𝑦𝑥𝐴) → 𝑥𝐴)
3 eleq1 2203 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
43biimpa 294 . . . . 5 ((𝑥 = 𝑦𝑥𝐴) → 𝑦𝐴)
52, 4jca 304 . . . 4 ((𝑥 = 𝑦𝑥𝐴) → (𝑥𝐴𝑦𝐴))
6 vex 2692 . . . . . 6 𝑦 ∈ V
76opelres 4832 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥𝐴))
8 df-br 3938 . . . . . . 7 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
96ideq 4699 . . . . . . 7 (𝑥 I 𝑦𝑥 = 𝑦)
108, 9bitr3i 185 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
1110anbi1i 454 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥𝐴) ↔ (𝑥 = 𝑦𝑥𝐴))
127, 11bitri 183 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) ↔ (𝑥 = 𝑦𝑥𝐴))
13 opelxp 4577 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥𝐴𝑦𝐴))
145, 12, 133imtr4i 200 . . 3 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴))
151, 14relssi 4638 . 2 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
16 xpexg 4661 . . 3 ((𝐴𝑉𝐴𝑉) → (𝐴 × 𝐴) ∈ V)
1716anidms 395 . 2 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
18 ssexg 4075 . 2 ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V)
1915, 17, 18sylancr 411 1 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1481  Vcvv 2689  wss 3076  cop 3535   class class class wbr 3937   I cid 4218   × cxp 4545  cres 4549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-res 4559
This theorem is referenced by:  ordiso  6929  omct  7010  ctssexmid  7032  ndxarg  12021  subctctexmid  13369
  Copyright terms: Public domain W3C validator