![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resiexg | GIF version |
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.) |
Ref | Expression |
---|---|
resiexg | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4937 | . . 3 ⊢ Rel ( I ↾ 𝐴) | |
2 | simpr 110 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
3 | eleq1 2240 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
4 | 3 | biimpa 296 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
5 | 2, 4 | jca 306 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
6 | vex 2742 | . . . . . 6 ⊢ 𝑦 ∈ V | |
7 | 6 | opelres 4914 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ 𝐴)) |
8 | df-br 4006 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I ) | |
9 | 6 | ideq 4781 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
10 | 8, 9 | bitr3i 186 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦) |
11 | 10 | anbi1i 458 | . . . . 5 ⊢ ((⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
12 | 7, 11 | bitri 184 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
13 | opelxp 4658 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) | |
14 | 5, 12, 13 | 3imtr4i 201 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴)) |
15 | 1, 14 | relssi 4719 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
16 | xpexg 4742 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
17 | 16 | anidms 397 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
18 | ssexg 4144 | . 2 ⊢ ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V) | |
19 | 15, 17, 18 | sylancr 414 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 Vcvv 2739 ⊆ wss 3131 ⟨cop 3597 class class class wbr 4005 I cid 4290 × cxp 4626 ↾ cres 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-res 4640 |
This theorem is referenced by: ordiso 7037 omct 7118 ctssexmid 7150 ssomct 12448 ndxarg 12487 subctctexmid 14835 |
Copyright terms: Public domain | W3C validator |