ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiexg GIF version

Theorem resiexg 4928
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
resiexg (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)

Proof of Theorem resiexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4911 . . 3 Rel ( I ↾ 𝐴)
2 simpr 109 . . . . 5 ((𝑥 = 𝑦𝑥𝐴) → 𝑥𝐴)
3 eleq1 2228 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
43biimpa 294 . . . . 5 ((𝑥 = 𝑦𝑥𝐴) → 𝑦𝐴)
52, 4jca 304 . . . 4 ((𝑥 = 𝑦𝑥𝐴) → (𝑥𝐴𝑦𝐴))
6 vex 2728 . . . . . 6 𝑦 ∈ V
76opelres 4888 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥𝐴))
8 df-br 3982 . . . . . . 7 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
96ideq 4755 . . . . . . 7 (𝑥 I 𝑦𝑥 = 𝑦)
108, 9bitr3i 185 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
1110anbi1i 454 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥𝐴) ↔ (𝑥 = 𝑦𝑥𝐴))
127, 11bitri 183 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) ↔ (𝑥 = 𝑦𝑥𝐴))
13 opelxp 4633 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥𝐴𝑦𝐴))
145, 12, 133imtr4i 200 . . 3 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴))
151, 14relssi 4694 . 2 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
16 xpexg 4717 . . 3 ((𝐴𝑉𝐴𝑉) → (𝐴 × 𝐴) ∈ V)
1716anidms 395 . 2 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
18 ssexg 4120 . 2 ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V)
1915, 17, 18sylancr 411 1 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2136  Vcvv 2725  wss 3115  cop 3578   class class class wbr 3981   I cid 4265   × cxp 4601  cres 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-res 4615
This theorem is referenced by:  ordiso  6997  omct  7078  ctssexmid  7110  ssomct  12374  ndxarg  12413  subctctexmid  13841
  Copyright terms: Public domain W3C validator