ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiexg GIF version

Theorem resiexg 4987
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
resiexg (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)

Proof of Theorem resiexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4970 . . 3 Rel ( I ↾ 𝐴)
2 simpr 110 . . . . 5 ((𝑥 = 𝑦𝑥𝐴) → 𝑥𝐴)
3 eleq1 2256 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
43biimpa 296 . . . . 5 ((𝑥 = 𝑦𝑥𝐴) → 𝑦𝐴)
52, 4jca 306 . . . 4 ((𝑥 = 𝑦𝑥𝐴) → (𝑥𝐴𝑦𝐴))
6 vex 2763 . . . . . 6 𝑦 ∈ V
76opelres 4947 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥𝐴))
8 df-br 4030 . . . . . . 7 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
96ideq 4814 . . . . . . 7 (𝑥 I 𝑦𝑥 = 𝑦)
108, 9bitr3i 186 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
1110anbi1i 458 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥𝐴) ↔ (𝑥 = 𝑦𝑥𝐴))
127, 11bitri 184 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) ↔ (𝑥 = 𝑦𝑥𝐴))
13 opelxp 4689 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥𝐴𝑦𝐴))
145, 12, 133imtr4i 201 . . 3 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴))
151, 14relssi 4750 . 2 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
16 xpexg 4773 . . 3 ((𝐴𝑉𝐴𝑉) → (𝐴 × 𝐴) ∈ V)
1716anidms 397 . 2 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
18 ssexg 4168 . 2 ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V)
1915, 17, 18sylancr 414 1 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  Vcvv 2760  wss 3153  cop 3621   class class class wbr 4029   I cid 4319   × cxp 4657  cres 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-res 4671
This theorem is referenced by:  ordiso  7095  omct  7176  ctssexmid  7209  ssomct  12602  ndxarg  12641  subctctexmid  15491
  Copyright terms: Public domain W3C validator